ЛАЗЕРНО-ОПТИЧЕСКИЕ КОМПОНЕНТЫ И ОБОРУДОВАНИЕ
ПРОИЗВОДСТВО / ПОСТАВКА / ИНТЕГРАЦИЯ
КАТАЛОГ
Фотодиоды
Элементы на ВБР
Оптические волокна
Оптика и оптомеханика
Компоненты радиофотоники
Лазеры для обработки материалов
Лазерные и нелинейные кристаллы
Волоконно-оптические компоненты
Твердотельные и волоконные лазеры
Изоляторы, циркуляторы, разветвители
Модуляторы, переключатели, трансиверы
Анализаторы излучения, измерительные системы
О О К О М П А Н И И

АО «Ленинградские лазерные системы» (ЛЛС) - компания, основанная в 2016 году. Основное направление деятельности - поставка компонентов и оборудования оптические компоненты оптики и фотоники. Главной миссией нашей компании является создание и развитие отечественных лазерно-оптических технологий в России для укрепления политики импортозамещения в стране и обеспечения полного удовлетворения потребностей по всему спектру комплектующих в различных отраслях.

На базе поставляемых волоконно-оптических компонентов возможна сборка и проектирование таких систем, как: высокомощные лазеры, усилители, системы радиофотоники, распределённого мониторинга объектов.

На сегодняшний день ведётся сотрудничество с такими компаниями, как: Standa, LightComm, FocusLight, BWT Beijing, ID Quantique, Ocean Optics, II-VI Laser Enterprise и многими другими.

В числе наших заказчиков входят учреждения Российской Академии Наук (ИОФ РАН, ИФП РАН, СО РАН), Университет ИТМО, ВГУУ, НГУ, СГУ, МГУ им. М. В. Ломоносова, Росатом.

«Ленинградские лазерные системы» позиционирует себя как молодое научно-исследовательское и производственное предприятие. Получив огромный опыт работы с различными государственными и коммерческими организациями нашей страны, компания ЛЛС готова предоставить услуги консалтинга, разработки и изготовления волоконных лазеров и усилителей различной мощности. Благодаря совместной работе компании ЛЛС с исследователями и разработчиками ведущих предприятий России, были разработаны проекты мощных волоконных модулей 1000-1500 Вт.

С июня 2018 года «Ленинградские лазерные системы» является резидентом Технопарка Университета ИТМО. На базе технопарка создана собственная лаборатория, в которой:
- проводятся научно-исследовательские и опытно-конструкторские работы;
- осуществляется мелкосерийное производство под ТЗ заказчика;
- проводятся демонстрации компонентной базы компаний – партнеров.

ЛЛС является членом Лазерной Ассоциации (ЛАС)

Тенденции и инновации в оптике и фотонике
ЛЛС запустила новый проект – новостной портал о последних новниках и достижениях индустрии фотоники:
- Разработки и новые технологии;
- Анонсы конференций, мероприятий и выставок;
- Справочная информация об элементарной базе – WIKI.

ОСНОВНЫЕ НАПРАВЛЕНИЯ РАБОТЫ В ОБЛАСТИ ОПТИКИ И ФОТОНИКИ

Обустройство лабораторий
Раздел каталога содержит информацию обо всем необходимом для создания и функционирования лабораторий: оптические столы, оптотехника, высокоточная оптика, нестандартная оптика, лазерные и нелинейные кристаллы, устройства формирования пучка, системы измерения лазерного излучения и другие аксессуары, необходимые для плодотворной работы.

Компонентная база
В данном разделе представлена волоконная оптика и волоконные компоненты для передачи излучения, а также для создания собственных лазеров и устройств. Источники лазерного излучения: диоды, линейки и матрицы, Драйверы и электроника для диодов. Компоненты для модуляции и преобразования излучения: элементы на волоконных и объемных Брагговских решетках, фазовые маски, диффракционные решетки, акусто- и электрооптические модуляторы, переключатели, трансиверы и фотодиоды. Компонентная база для области радиофотоники.

Лазерные системы
Размещена информация о волоконных лазерах, непрерывных лазерах для научных задач, импульсных лазерных системах, а также твердотельных лазерах российского производства.

Измерительное оборудование
Предоставлена информация о различных системах измерения, в том числе волоконно-оптическое испытательное оборудование, устройства для тестирования активных компонентов, системы для измерения параметров излучения, системы спектроскопии, высокоточное оборудование и многое другое.

Обработка материалов
В данном разделе каталога представлен обзор решений для таких процессов, как микромашининг, лазерные маркировка, резка, сварка, заказка и наплавка.

Компания ЛЛС оказывает следующие услуги:
- Поставка и интеграция компонентов и оборудования;
- Разработка и выпуск ТУ;
- Технологический консалтинг;
- Организация обучения;
- Работа в рамках исполнения законов Российской Федерации (44ФЗ, 223ФЗ, 159ФЗ).

Компания «Ленинградские Лазерные Системы» осуществляет полную техническую поддержку поставляемой продукции на территории Российской Федерации и стран СНГ. Мы гарантируем высокое качество и быструю доставку компонентов. Всегда рады видеть Вас в кругу наших клиентов и партнеров!

www.lenlasers.ru

1
СОДЕРЖАНИЕ

► ОБУСТРОЙСТВО ЛАБОРАТОРИЙ ... 5

СЕРВИС 3D моделирование, оптический расчет, пуско-наладка .. 6
Оптика ... 7
Нестандартная оптика, внеосевые параболические зеркала ... 9
Кристаллы .. 11
Производители оптики и кристаллов — Castech, Raicol Crystals Ltd., Cytur 13
Оптомеханика — Standa .. 14
Высокоточные позиционеры — SmarAct .. 16
Устройства формирования пучка — Optogama, Adloptica ... 17
Системы измерения характеристик лазерного излучения — Ophir, DataRay 18
СХЕМА ПРИМЕНЕНИЯ Лазерно-оптические компоненты на примере ТГц спектрометра 19
СТАТЬЯ Нелинейно-оптические кристаллы ... 20

► КОМПОНЕНТНАЯ БАЗА .. 23

СЕРВИС Тестирование волокно-оптических компонентов, ТУ .. 24
Волоконно-оптические компоненты — LightComm, LLSC, KS Photonics ... 25
Оптические волокна ... 27
СХЕМА ПРИМЕНЕНИЯ Генерация излучения терагерцового диапазона .. 28
Импульсный тулиевый лазер ... 29
СТАТЬЯ Широкополосные модовые мультиплексоры. Альтернативное решение для телекоммуникаций и научных исследований ... 30
Элементы ВБР для сенсорики и систем детектирования ... 34
Компенсаторы дисперсии, фильтры, высокомощные ВБР — TeraXion ... 35
Российские производители волоконных Брэгговских решеток (ВБР) и систем на их основе 36
СХЕМА ПРИМЕНЕНИЯ Сенсорика: лазерный датчик для измерения температуры и деформации ... 37
Дифракционные решетки и фазовые маски — Ibsen Photonics ... 38
СЕРВИС Консультация и подбор компонентов для создания твердотельных лазеров, производство квантовер по ТЗ ... 39
Одномодовые лазеры, одночные излучатели и чипы — III – VI Laser Enterprise .. 40
Много модовые лазерные диоды накачки — BWT Beijing .. 41
Диодные матрицы и линейки, микрооптика для ЛД — Focuslight, LIMO .. 42
Лазеры, стабилизированные объемной Брэгговской решеткой — Necsel, Ondax 43
Лазерные диоды для различных применений .. 44
СХЕМА ПРИМЕНЕНИЯ Твердотельный лазер ... 45
СТАТЬЯ: Исследование надежности диодных лазеров с несколькими одночными излучателями высоко уровня яркости ... 46
Когерентная передача данных — NeoPhotonics ... 55
Суперлюминесцентные диоды .. 56
Драйверы, лазерная электроника — Maiman Electronics, FEDAL .. 57
Кремниевые фотодиоды и фотоумножители — Excelitas .. 58
ИК фотодетекторы — VIGO Systems S.A. ... 59
Бескорпусные и высокоскоростные фотоприемники — Albis ... 60
APD счетчики фотонов — Wooriro .. 61
Акустооптические модуляторы — AA Optoelectronics .. 62
Электрооптические модуляторы — EO Space ...63
Оптические трансиверы — Finisar ...64
Оптические переключатели — Sercalo, Agiltron ...65
Волоконно-оптические усилители — Amonics, Orion Laser66
Компонентная база радиофотоники: основные узлы, ключевые характеристики ...67
СХЕМА ПРИМЕНЕНИЯ Передача ВЧ/СВЧ сигнала по волокну68
Радиофотонные тракты — Microwave Photonic Systems, ЛЛС69
Передача мощности по волокну — MN Go Power ...70
▶ ЛАЗЕРНЫЕ СИСТЕМЫ ...71
СЕРВИС Твердотельные лазеры. Консультация/подбор/ремонт72
Непрерывные лазеры для научных задач — Oxxius, Hubner73
Импульсные лазерные системы — Solar, Huaray Precision Laser74
Твердотельные лазеры российского производства — Laser Compact, Laser Export75
СЕРВИС Волоконные лазеры. Консультация/подбор/ремонт76
Волоконные лазеры: 1064 нм, 1550 нм, 2000 нм ..77
Узкополосные, широкополосные, импульсные волоконные лазеры — NKT Photonics ...78
Фемтосекундные волоконные лазеры — Menlo Systems ..81
Волоконные лазеры российского производства — Инверсия-Файбер, НЦВО Фотоника ...82
Высокомощные волоконные лазеры — Raycus ...83
▶ ИЗМЕРИТЕЛЬНОЕ ОБОРУДОВАНИЕ ..85
Волоконно-оптическое испытательное оборудование — EXFO86
Тестирование активных компонентов и готовых систем — Keysight Technologies88
Специальные измерения: анализ импульсов, PDV и прочее — Coherent Solutions90
Системы для поляризационных измерений — Novoptel ..91
Высокоточные анализаторы оптического спектра — APEX Technologies92
ТГц, оптические частотные гребенки — Menlo Systems ..93
Квантовые коммуникации — ID Quantique ...94
Системы спектроскопии — Ocean Optics ...96
▶ ОБРАБОТКА МАТЕРИАЛОВ ...97
Комплексные поставки ...98
Лазерная маркировка — Hgtech ..99
Лазерная резка — Hgtech ..100
Лазерная сварка и аддитивные технологии — Hgtech ...101
Микромашининг — Standa ..102
СТАТЬЯ Преимущества лазеров MOPA над лазерами Q-switch103
▶ ТЕХНОЛОГИЧЕСКОЕ ОБОРУДОВАНИЕ ВОЛКОННОЙ ОПТИКИ107
Оборудование для тестирования волокон и преформ — Photon kinetics108
Оборудование для сварки и обработки стекол — Nyfors ..109
Лазерная безопасность ..110
▶ ВЫСТАВКИ И НАУЧНЫЕ КОНФЕРЕНЦИИ. АНОНС МЕРОПРИЯТИЙ111
Позиционеры с прямым приводом

8MRL250
Поворотная платформа

Особенности:
- Диапазон перемещения 360°
- Разрешающая способность энкодера 1 arcsec
- Двусторонняя повторяемость 4 arcsec
- Нагрузка до 20 кг
- Отсутствие люфта
- Высокая скорость > 3300 град/с

8MTL120XY
Планарный позиционер

Особенности:
- Диапазон перемещения 120 x 120 мм
- Разрешающая способность энкодера до 1 нм
- Двусторонняя повторяемость (СК) ±0.10 μм
- Ортогональность ±5 arcsec
- Нагрузка до 30 кг
- Отсутствие люфта
- Высокая скорость > 1000 мм/с и ускорение > 20000 мм/с²

Контроллеры и драйверы от ACS motion control

- Управление для любых типов моторов
- Управление векторным движением в реальном времени
- Идентификация передаточной функции
- Поддержка калибровки и компенсация динамической ошибки

LUMS программное оборудование

- Для лазерной резки, маркировки, 3D принтера
- Генерация траекторий через импорт CAD, DXF, DWG файлов и т. д.

Применение: Прецисионная микрообработка, лазерная резка, маркировка, сканирующие системы, системы слежения, 3D принтинг.

Компания ЛЛС осуществляют поставку, пуско-наладочные работы и обучение по продукции STANDA. Полное описание продуктов, а также всех доступных моделей доступны на сайтах www.standa.lt и www.lenlasers.ru
ОБУСТРОЙСТВО ЛАБОРАТОРИЙ

ОБОРУДОВАНИЕ

▸ Оптические столы
▸ Оптомеханика
▸ Высокоточные позиционеры
▸ Оптика
▸ Нестандартная оптика
▸ Лазерные и нелинейные кристаллы
▸ Системы профилирования лазерного луча
▸ Детекторы
▸ Аксессуары, необходимые для плодотворной работы

СЕРВИС

▸ 3D моделирование
▸ Оптический расчет
▸ Пуско-наладочные работы

ВARIANTЫ РЕШЕНИЙ

▸ Схема терагерцового спектрометра

СТАТЬЯ

▸ Нелинейно-оптические кристаллы
3D МОДЕЛИРОВАНИЕ

3D Моделирование оптических и механических компонентов разрабатываемого стенда, лаборатории. Благодаря 3D моделированию, вы можете представить, как будет выглядеть стенд или оптическая лаборатория. Дополнительно предоставляются габаритные 2D чертежи. Файлы предоставляются в доступных для чтения форматах.

► Чертежи по ГОСТ
► Разработка 3D модели

ОПТИЧЕСКИЙ РАСЧЕТ

Оптический расчет, возможность заказать разработку оптической системы, отдельного компонента или моделирования работы оптической системы. Расчет выполняется в специализированном программном обеспечении для расчета оптики Zemax. После расчета Вы получите чертежи и оптический выпуск. Для производства готовых оптических компонентов наши инженеры работают с нашим партнерами в России, Европе и Азии.

► Чертежи для изготовления
► Оптический выпуск
► Zemax

ПУСКО-НАЛАДКА

Пуско-наладка, инженеры компании ЛЛС помогут произвести установку, запуск оборудования, выполнить монтаж, настройку и подготовку к работе. При необходимости провести обучение для сотрудников по работе с новым оборудованием.

► Доставка
► Установка
► Настройка
ОПТИКА

Компания «Ленинградские Лазерные Системы» предлагает различную проходную оптику и микрооптику разных габаритов для различных оптических диапазонов и применений. Возможно производство компонентов.

ПРОХОДНАЯ ОПТИКА И КОМПОНЕНТЫ

Мы предлагаем оптику и оптические компоненты высокого качества для ультрафиолетового, видимого, ближнего и среднего ИК диапазонов.

ЛИНЗЫ

ФИЛЬТРЫ И ОКНА

ПРИЗМЫ

ЗЕРКАЛА

ПОЛАРИЗАТОРЫ

СВЕТОДЕЛИТЕЛИ
ОПТИКА ПО ПРИМЕНЕНИЯМ

Оптика для лазеров

Оптика для сверхбыстрых лазеров

Оптика для систем лазерной микрообработки

Оптика для специальных применений

Оптика для нескольких кВт лазерных систем

Оптика для медицинских лазерных систем

МИКРООПТИКА

• сферические оптические компоненты
• высокоточные линзы со сферической поверхностью
• плоские линзы
• сборки

ПРОСВЕТЛЯЮЩИЕ ПОКРЫТИЯ

• Однослоиное покрытие MgF₂
• V-образные просветляющие покрытия
• Двойное-V и тройное-V просветляющее покрытие
• Широкополосные просветляющие покрытия

ДОСТУПНЫЕ ТЕХНОЛОГИИ ПОКРЫТИЯ ОПТИЧЕСКИХ ЭЛЕМЕНТОВ

Электронно-лучковое напыление + Ионное напыление E-Beam + IAD

Ионно-лучевое напыление IBS

Магнетронное напыление MS
ОПТИЧЕСКИЕ ЭЛЕМЕНТЫ ИЗ СТЕКЛА И КРИСТАЛЛОВ

Линзы, световой диаметр, 0.8...180 мм
Линзы и окна, до 350 мм
Линзы и окна из лейкосапфира, диаметр, до 70 мм
Оптические клинья, световой диаметр, до 630 мм
Призмы, размеры 0.8…120 мм
Крупногабаритная оптика, световой диаметр, до 860 мм
Пластины и линзы из кристаллов КСІ, КBr, ZnSe, Ge, CaF₂, LiF, BaF₂ и др.
Активные элементы из неодимового стекла: плоские до 500х260х40 мм, цилиндрические до Ø140х330 мм
Кварцевые пластины: λ/2 (λ=0,6328 мкм)
Детали из стекла и ситалла, размер до 250х250х50 мм

ОПТИКА ПО ЧЕРТЕЖАМ, ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ВНЕОСЕВЫЕ ПАРАБОЛИЧЕСКИЕ ЗЕРКАЛА

Технические характеристики

<table>
<thead>
<tr>
<th>Материал зеркала</th>
<th>ЛК5, ЛК7, ситалл</th>
</tr>
</thead>
<tbody>
<tr>
<td>Покрытие зеркальной поверхности</td>
<td>алюминий, медь</td>
</tr>
<tr>
<td>Световой диаметр зеркала, мм</td>
<td>210</td>
</tr>
<tr>
<td>Эффективное фокусное расстояние, мм</td>
<td>800, 1000, 2000±10</td>
</tr>
<tr>
<td>Линейное поле, мм</td>
<td>10, 20, 50, 8</td>
</tr>
</tbody>
</table>

ДОСТОИНСТВА ВНЕОСЕВЫХ ПАРАБОЛИЧЕСКИХ ЗЕРКАЛ:
- Позволяют сократить размеры системы
- Уменьшить массу системы
- Сократить стоимость системы
АСФЕРИЧЕСКАЯ ОПТИКА

Компания «ЛПС» сотрудничает с крупнейшими производителями из России, Европы и Азии. С помощью инженеров нашей компании можно заказать расчет асферической оптики для ваших задач и произвести ее у наших партнеров.

ОБЪЕМНЫЕ БРЭГГОВСКИЕ РЕШЁТКИ

ОСНОВНЫЕ ПРИМЕНЕНИЯ ПРОДУКТОВ OPTIGRATE

• спектральная фильтрация и подавление шума лазерных пучков
• низкочастотная (ТГц) Рамановская спектроскопия
• перестраиваемые фильтры для спектроскопии высокого разрешения
• расширение и сжатие импульсов для сверхскоростных импульсных лазеров

Зеркала BragGrate™ Mirror
Отражающая брэгговская решетка для стабилизации длины волны лазерного диода. Размещается в резонаторе лазера для управления лазерным излучением.

• Дифракционная эффективность: 3 – 99,7 %
• Диапазон длин волн: 320 – 2700 нм
• Толщина решетки: 0,5 – 20 мм

Узкополосные рефлекторные фильтры BragGrate™ Notch Filter
Для низкочастотной Рамановской спектроскопии.

• Достигаемое ослабление: > 99,99 %
• Рабочий диапазон: 400 – 2500 нм

Объединители BragGrate™ Combiner
Предназначены для объединения лазерных излучений от нескольких источников в одно с увеличением энергетической яркости.

• Дифракционная эффективность: 90 – 99 %
• Рабочий диапазон: 400 – 2700 нм
• Толщина решетки: 0,5 – 10 мм

Пространственные фильтры BragGrate™ Spatial Filters

• Дифракционная эффективность: 90 – 95 %
• Пространственное подавление шума: до 30 дБ
• Диапазон длин волн: 400 – 2300 нм

Чирированные BragGrate™ Pulse
Первая коммерчески доступная чирированная брэгговская решетка, предназначенная для расширения и сжатия фемтосекундных и пикосекундных лазерных импульсов.

• Рабочий диапазон: 700 – 2500 нм
• Толщина: до 50 мм

Перестраиваемый лазер с узкой линией SEOP

• Длины волн: 770, 780, 794, 785, 811, 8, 811, 5, 852, 894, 3 и 904, 5 нм
• Ширина спектральной линии, FWHM: <10 ГГц
• Диапазон перестройки: 300 нм
• Спектральная устойчивость: ± 2,5 ГГц в течение 4 часов работы
• Амплитудная устойчивость: ± 0,5 % в течение 4 часов работы
• Номинальная выходная мощность: 35 - 100 Вт

мультиплексирование и перестройка лазеров.

Специальные зеркала

Используются в промышленных лазерах, могут применяться в резонаторах, как и во внешних транспортирующих и формирующих оптических системах с мощностью излучения до 10 кВт и более.

Диапазон длин волн, мкм 2...14 мкм
Коэффициент зеркального отражения p >99,0% (λ=10,6 мкм)
Форма оптической поверхности плоская, сферическая, асферическая
Материалы медь, алюминий, кремний
Размеры 10...500 мкм
Шероховатость Rq 0,002...0,006 мкм
Точность формы оптической поверхности (orms) до λ/10 на световом диамetre до 500 мм

Optigrate — компания, являющаяся ведущим производителем объемных брэгговских решеток на основе фото-термо-рефрактивного стекла.

www.lenlasers.ru
Нелинейно-оптические кристаллы

В каталоге представлены не только наиболее популярные кристаллы для параметрических преобразований (LBO, KTP, KDP, LiNbO₃), но также кристаллы, появившиеся на рынке относительно недавно (BIBO, CLBO, PPKTP), однако обладающие большим потенциалом и возможностями в приложениях преобразования длин волн лазерного излучения.

<table>
<thead>
<tr>
<th>Нелинейно-оптические кристаллы</th>
<th>Диапазон прозрачности, нм</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBO (LiB₃O₅)</td>
<td>155 – 3200</td>
</tr>
<tr>
<td>BBO (β-BaB₂O₄)</td>
<td>189 – 3500</td>
</tr>
<tr>
<td>BIBO (BiB₃O₆)</td>
<td>286 – 2700</td>
</tr>
<tr>
<td>CLBO (CsLiB₃O₁₁)</td>
<td>180 – 2750</td>
</tr>
<tr>
<td>KDP (KH₂PO₄)</td>
<td>174 – 1570</td>
</tr>
<tr>
<td>DKDP (KD₂PO₄)</td>
<td>200 – 2100</td>
</tr>
<tr>
<td>LiIO₃</td>
<td>280 – 6000</td>
</tr>
<tr>
<td>KTP (KTIOPO₄)</td>
<td>350 – 4500</td>
</tr>
<tr>
<td>GTR-KTP (Gray tracking resistance KTIOPO₄)</td>
<td>350 – 4500</td>
</tr>
<tr>
<td>PPKTP (Periodically Poled KTIOPO₄)</td>
<td>350 – 4500</td>
</tr>
<tr>
<td>RTP (RbTiOPO₄)</td>
<td>350 – 4500</td>
</tr>
<tr>
<td>KTA (KTIOAsO₃)</td>
<td>350 – 5300</td>
</tr>
<tr>
<td>MgO:LiNbO₃</td>
<td>400 – 5000</td>
</tr>
<tr>
<td>LiNbO₃</td>
<td>400 – 5500</td>
</tr>
<tr>
<td>GaSe</td>
<td>620 – 20000</td>
</tr>
<tr>
<td>ZnGeP₂</td>
<td>740 – 12000</td>
</tr>
<tr>
<td>AgGaS₂</td>
<td>470 – 13000</td>
</tr>
<tr>
<td>AgGaSe₂</td>
<td>710 – 19000</td>
</tr>
</tbody>
</table>

Лазерные кристаллы

В таблице ниже представлены лазерные кристаллы фторидов (LiYF₄ и CaF₂), оксидов (как со структурой граната Y₃Al₅O₁₂, так и перовскита YAlO₃), вольфраматов (KGd(WO₄)₂ и KY(WO₄)₂) и ванадатов (YVO₄), легированные редкоземельными металлами (Yb, Nd, Er, Tm). Представленное разнообразие активных сред, позволяет перекрыть потребность в генерации лазерного излучения ближнего и среднего ИК диапазона.

<table>
<thead>
<tr>
<th>Лазерные кристаллы</th>
<th>Длины волн генерации, нм</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nd:YLF (Nd:LiYF₄)</td>
<td>1047, 1053, 1313 1324 и 1370</td>
</tr>
<tr>
<td>Nd:YAG (Nd:Y₃Al₅O₁₂)</td>
<td>946, 1064, 1319 и 1444</td>
</tr>
<tr>
<td>Nd:YVO₄</td>
<td>914, 1064 и 1342</td>
</tr>
<tr>
<td>Nd:YAP (Nd:YAlO₃)</td>
<td>930, 1079, 1340 и 1432</td>
</tr>
<tr>
<td>Yb:CaF₂</td>
<td>1015 ~1060</td>
</tr>
<tr>
<td>Yb:YAG (Yb:Y₃Al₅O₁₂)</td>
<td>1030</td>
</tr>
<tr>
<td>Yb:YLF (Yb:LiYF₄)</td>
<td>995 и 1017</td>
</tr>
<tr>
<td>Yb:KGW (Yb:Kg(WO₄)₂)</td>
<td>1023 ~1060</td>
</tr>
<tr>
<td>Yb:LuAG (Yb:LuAlO₃)</td>
<td>1031</td>
</tr>
<tr>
<td>Yb:KYW (Yb:KY(WO₄)₂)</td>
<td>1025 ~1058</td>
</tr>
<tr>
<td>Er:YAP (Er:YAlO₃)</td>
<td>1660 и 2730</td>
</tr>
<tr>
<td>Er:YAG (Er:Y₃Al₅O₁₂)</td>
<td>1645 и 2936</td>
</tr>
<tr>
<td>Tm:YAP(Tm:Y₃Al₅O₁₂)</td>
<td>1870 ~2030</td>
</tr>
<tr>
<td>Tm:YLF (Tm:LiYF₄)</td>
<td>2350 и 1890</td>
</tr>
<tr>
<td>Yb:YAG (Yb:Y₃Al₅O₁₂)</td>
<td>2013</td>
</tr>
</tbody>
</table>

Твердотельные насыщающиеся поглотители

Представленные ниже твердотельные насыщающиеся поглотители позволяют реализовать режим пассивной модуляции добротности для большинства неодимовых и титановых лазеров.

<table>
<thead>
<tr>
<th>Твердотельные насыщающиеся поглотители</th>
<th>Рабочий диапазон, нм</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co:Spinel (Co^2+:MgAl₂O₄)</td>
<td>1300 ~1600, 1540</td>
</tr>
<tr>
<td>Cr:YAG (Cr^3+:Y₃Al₅O₁₂)</td>
<td>950 ~1100, 1064</td>
</tr>
<tr>
<td>V:YAG (V^5+:Y₃Al₅O₁₂)</td>
<td>1640 ~1440, 1064, 1338 и 1444</td>
</tr>
</tbody>
</table>
КРИСТАЛЛЫ

Делители лучей на основе двулучепреломляющих кристаллов
Делитель создает два параллельных ортогонально поляризованных пучка от неполяризованного излучения или излучения с круговой поляризацией. Величина смещения между обычно ненаправленным и необъясненным пучками зависит от двулучепреломления материала на определенной длине волны и длине элемента. Изменяя различные материалы и их длину, можно создавать разделители практически для любого параллельного разделения. По запросу предоставляется широкий диапазон размеров, варианты полировки, различные спектральные диапазоны, AR покрытия или корпуса.

<table>
<thead>
<tr>
<th>Делители лучей на основе двулучепреломляющих кристаллов</th>
<th>Двулучепреломление, ((n_o - n_e))</th>
<th>Диапазон прозрачности, нм</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaCO₃</td>
<td>-0.1572 @ 1497 нм</td>
<td>350 – 2300</td>
</tr>
<tr>
<td>YVO₄</td>
<td>0.2039 @ 1550 нм</td>
<td>400 – 5000</td>
</tr>
<tr>
<td>α-BBO (α -BaB₂O₄)</td>
<td>0.2560 @ 1530 нм</td>
<td>190 – 3500</td>
</tr>
<tr>
<td>LiNbO₄</td>
<td>-0.0738 @ 1440 нм</td>
<td>420 – 5200</td>
</tr>
</tbody>
</table>

Сцинтилляционные кристаллы
Сцинтилляционные кристаллы обладают способностью излучать свет при поглощении ионизирующего излучения (гамма-излучения), что позволяет применять его для получения энергетического спектра гамма-излучения, в ядерно-медицинской визуализации (PET, SPECT), физике высоких энергий, безопасности, геолого-разведке и мониторинге окружающей среды.

<table>
<thead>
<tr>
<th>Сцинтилляционные кристаллы</th>
<th>Максимум спектра высвечивания, нм</th>
<th>Основное время затухания люминесценции (время высвечивания), нс</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaCl₃(Ce)</td>
<td>350</td>
<td>28</td>
</tr>
<tr>
<td>LaBr₃(Ce)</td>
<td>380</td>
<td>16</td>
</tr>
<tr>
<td>NaI(Tl)</td>
<td>415</td>
<td>250</td>
</tr>
<tr>
<td>CsI(Na)</td>
<td>420</td>
<td>630</td>
</tr>
<tr>
<td>CsI(Tl)</td>
<td>550</td>
<td>1000</td>
</tr>
<tr>
<td>CsI</td>
<td>315</td>
<td>16</td>
</tr>
</tbody>
</table>

Акустооптические кристаллы

<table>
<thead>
<tr>
<th>Акустооптические кристаллы</th>
<th>Диапазон прозрачности, нм</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBN (Sr₉Ba₁₀-Nb₂O₆:CeO₂)</td>
<td>350 – 6000</td>
</tr>
<tr>
<td>LiNbO₄</td>
<td>420 – 5200</td>
</tr>
</tbody>
</table>

Электрооптические кристаллы
В каталоге также представлен большой ассортимент кристаллов для создания электрооптических и (или) электрооптических затворов для активной модуляции добротности твердотельных лазеров в диапазоне генерации лазерного излучения от верхней границы УФ до верхней границы среднего ИК диапазонов.

<table>
<thead>
<tr>
<th>Электрооптические кристаллы</th>
<th>Диапазон прозрачности, нм</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe:LiNbO₄</td>
<td>350 – 5500</td>
</tr>
<tr>
<td>BSO (Bi₁₂SiO₂₀)</td>
<td>400 – 6000</td>
</tr>
<tr>
<td>SBN (Sr₉Ba₁₀-Nb₂O₆:CeO₂)</td>
<td>350 – 6000</td>
</tr>
<tr>
<td>LiNbO₄</td>
<td>420 – 5200</td>
</tr>
<tr>
<td>LiTaO₃</td>
<td>400 – 4500</td>
</tr>
</tbody>
</table>

Магнитооптические кристаллы
Представленные в каталоге магнитооптические кристаллы отлично подойдут для создания изолаторов для волоконных лазеров следующего поколения и вращателей Фарадея.

<table>
<thead>
<tr>
<th>Магнитооптические кристаллы</th>
<th>Фирма производитель (поставщик)</th>
<th>Диапазон прозрачности, нм</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSAG (Tb₃Sc₂Al₄O₁₁)</td>
<td>Castech</td>
<td>400 – 1600</td>
</tr>
<tr>
<td>TGG (Tb₃Ga₂O₁₁)</td>
<td>Castech</td>
<td>400 – 1100, исключая отрезок 475 – 500</td>
</tr>
</tbody>
</table>
Компания «Ленинградские Лазерные Системы» сотрудничает со многими заводами-производителями оптических компонентов (линзы, призмы, пластинки, поляризационная оптика), лазерных и нелинейных кристаллов, что позволяет разрабатывать изделия по техническому заданию заказчика и производить нестандартные компоненты.

Castech (Китай) — мировой производитель кристаллов и оптики для лазерной техники и систем телекоммуникации. Компания была создана в 1988 году на базе Фуцзянского института материаловедения китайской академии наук.

- Лазерные и нелинейные кристаллы,
- Магнито-оптические кристаллы
- Высокомощные изоляторы, врацатели Фарадея
- Ячееки Поккельса
- Лазеры накачки 1064 нм
- Оптические компоненты (линзы, зеркала, призмы, поляризационная оптика, ИК и УФ оптика)

Raicol Crystals Ltd. (Израиль) — производитель нелинейных оптических кристаллов и электрооптических устройств с 1995 года. Выращенные из расплава кристаллы KTP (калий титанил фосфат) и RTP (рубидий титанил фосфат), всемирно известны своим высоким качеством и надежностью. Компания также разработала технологию роста для высококачественных кристаллов LBO и BBO.

- HGTR KTP (калий титанил фосфат с высоким сопротивлением)
- BBO (борат бария), LBO (борат лития)
- RTP (рубидий титанил фосфат), KTP (калий титанил фосфат)
- PP MgLN SLT KTP (монокристаллы LN (ниобата лития) легированные MgO, SLT (стехиометрического тантала лития), калий титанил фосфат с периодической доменной структурой)

Crytur (Чехия) — одна из ведущих мировых компаний в области производства и обработки синтетических кристаллов. Компания использует сложные запатентованные технологии выращивания кристаллов и точную обработку для соответствия самым высоким стандартам и требованиям. Компания уделяет особое внимание нишевым применениям и специализируется на производстве по индивидуальным заказам.

Thorlabs (США) — всемирно известная компания, которая поставляет и производит большой диапазон различных оптических компонентов.

Edmund Optics (США) — один из ведущих поставщиков оптики и оптических компонентов для различных сфер науки и техники.

Semrock (США) — производитель оптических фильтров. Компания способна изготовить оптические фильтры с самыми технически-сложными характеристиками, которые могут быть использованы во флуоресцентном анализе, рамановской спектроскопии и во многих других применениях.
ОПТОМЕХАНИКА

Компания «Ленинградские лазерные системы» предлагает продукцию производителя STANDA - оптические столы, столешницы, системы виброизоляции, ламинарные рабочие станции, моторизированные позиционеры, оптомеханику для крепления оптики, кристаллов. Продукция доступна с стандартными параметрами, которые можно найти в каталоге, так и с нестандартными размерами и характеристиками.

Оптические столы и виброизоляционные системы

Standa предлагает сотовые оптические плиты и системы виброизоляции для различных применений. При выборе оптического стола важно учесть многие особенности: область применения, требуемая нагрузка, требования к виброизоляции, тип поверхности, тип материалов, температурный диапазон. Для правильного выбора оптического стола рекомендуем воспользоваться опросной формой на нашем сайте.

ПЕРЕЧЕНЬ ОБОРУДОВАНИЯ
- Сотовые оптические плиты, выполненные из ферритмагнистой нержавеющей, стали или немагнитных материалов.
- Оптические столешницы
- Системы активной и пассивной виброизоляции
- Сборки из нескольких оптических столов
- Опоры для оптических столов
- Воздушные компрессоры
- Лабораторные приборные полки
- Системы очистки воздуха
- Рабочие станции

Моторизованные системы перемещения, контроллеры и драйверы

Наб основывающихся стандартных трансляторов можно создать многоосевые системы для решения задач любой сложности. Для управления трансляторами используются контроллеры собственного производства, которые совместимы с позиционерами от других производителей*. Управление трансляторами осуществляется при помощи программного обеспечения Xi Lab – доступного на сайте производителя.

*список поддерживаемых позиционеров можно уточнить на сайте www.lenlasers.ru
- Линейные моторизованные трансляторы
- Программное обеспечение
- Контроллеры
- Блоки питания
- Кабели

Поворотные столики и трансляторы

Производитель предлагает широкий выбор стандартных механических трансляторов, на базе которых можно создавать сборки.
- Линейные трансляторы по осям X,Z
- Предварительно собранные многоосевые трансляторы
- Поворотные трансляторы
- Платформы на основе ножничных подъемников
- Гониометры
- Платформы для регулировки наклона
- Ручные приводы
- Актуаторы
ОПТОМЕХАНИКА

Оптомеханика
Для позиционирования оптики на оптическом столе, Standa предлагает большой выбор стандартных и нестандартных держателей, адаптеров, винтов, ослабителей, затворов и др.
- Держатели и крепления: линз, зеркал, фильтров, камер, волокон, решеток, поляризаторов, призм, расширителей луча, квадратной оптики, лазеров, тестовых объектов и образцов
- Оптические сборки, конструктор: оптические стержни, зажимы, основания, магнитные основания, крепежи
- Оптические рельсы
- Затворы
- Кронштейны, уголки, распорки
- Переходные адаптеры для монтажных отверстий
- Винты, гайки, резьбовые адаптеры
- Микрометрические винты

Компоненты для особых условий эксплуатации
Одним из главных достоинств производителя Standa является возможность модернизации узлов для работы в особых условиях эксплуатации – в вакууме и при отрицательных температурах.
- Вакуум
- Агрессивные температуры

Аксессуары для лазерной защиты
При работе с лазерным излучением важным является защита органов зрения, наши инженеры предлагают квалифицированную помощь в подборе защитных очков и других аксессуаров.
- Очки
- Фильтры
- Визуализаторы излучения
- Защитные экраны

Инженеры «Ленинградских Лазерных Систем» прошли обучение у производителя Standa и могут оказывать квалифицированную консультацию и помощь при выборе оборудования, а так же проводить пуско-наладочные работы.
ВЫСОКОТОЧНЫЕ ПОЗИЦИОНЕРЫ

Линейные позиционеры
Компания SmarAct предлагает несколько серий линейных позиционеров в зависимости от применения.

<table>
<thead>
<tr>
<th>Серия</th>
<th>SLC</th>
<th>SL</th>
<th>SLL</th>
<th>SHL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Длина позиционера</td>
<td>20 .. 180</td>
<td>11 .. 31</td>
<td>70 .. 1500</td>
<td>75</td>
</tr>
<tr>
<td>Вес [грамм]</td>
<td>13 .. 216</td>
<td>≈ 3</td>
<td>≈ 45</td>
<td>200</td>
</tr>
<tr>
<td>Макс. подъемная сила [Н]</td>
<td>1.5, 2.2 (-D)</td>
<td>0.35</td>
<td>1.5</td>
<td>20</td>
</tr>
</tbody>
</table>

Открытый контур

Диапазон перемещения [мм]	12 .. 123	45 .. 16	10 .. 940	10
Ширина шага [нм]	50 .. 150	50 .. 1500	50 .. 3000	50 .. 1500
Диапазон пьезо сканирования [мм]	> 1.5	> 1.5	> 3	0.5
Скорость [мм / с]	> 20	> 13	> 20	> 9
Поворотность, полный ход [нм]	± 25 .. ± 80	-	± 70 .. ± 450	± 100

Вращательные позиционеры
SmarAct предлагает различные поворотные позиционеры на основе пьезо элементов с неограниченным вращением.

<table>
<thead>
<tr>
<th>Серия SR</th>
<th>SR-1908</th>
<th>SR-4011</th>
<th>SR-7012</th>
<th>SR-12012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Блокирующий момент [Н*см]</td>
<td>≥ 0.3</td>
<td>≥ 5</td>
<td>≥ 10</td>
<td>≥ 15</td>
</tr>
<tr>
<td>Максимальная нагрузка [Н]</td>
<td>5</td>
<td>10</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>Размеры позиционера мм*3</td>
<td>24.7 х 20</td>
<td>40 х40</td>
<td>70 х70</td>
<td>120 х120</td>
</tr>
<tr>
<td>Вес [грамм]</td>
<td>13</td>
<td>60</td>
<td>100</td>
<td>320</td>
</tr>
<tr>
<td>Апертура [мм]</td>
<td>7</td>
<td>9</td>
<td>100</td>
<td>320</td>
</tr>
</tbody>
</table>

Гониометры
Используя технологию пьезопривода - SmarAct предлагает гониометры с разными радиусами.
Гониометры серии SGO стабильные и идеально подходят для микро- или нанопозиционных задач.

Диапазон перемещения	± 5°
Нормальная нагрузка	500 грамм
Ширина шага	0.7 – 7 микрад
Диапазон сканирования	10.5 микрад
Разрешение сканирования	0.01 микрад
Скорость	4°/с
Максимальная частота	18.5 кГц
Блокирующий момент	20 Н*см
Поперечный момент	1.2 Н*см
Размеры	50 х 50 х 17 мм
Центр вращения	60.5 мм
Вес	≈ 140 г

Микрозахваты
Микрозахваты SmarAct (SG) подходят как для микро-, так и для макро-скопические применения. Каждый микрозахват состоит из двух частей: линейного позиционера и захвата. В зависимости от применения захваты могут быть смешены.

SmarAct – разрабатывает высокопроизводительные решения для обработки и позиционирования в микро- и нанометровом диапазоне. Производитель предлагает широкий ассортимент продукции от отдельных позиционеров до сложной параллельной кинематике, миниатюрных роботов. В позиционерах компании SmarAct используется технология с запатентованным приводом Stick-Slip, позволяющим перемещать объект на микроэлектронные расстояния с высокой скоростью. С помощью этой технологии позиционеры SmarAct могут перемещаться с разрешением менее нанометра.
УСТРОЙСТВА ФОРМИРОВАНИЯ ПУЧКА

ФОРМИРОВАТЕЛИ ПРОФИЛИ ИЗЛУЧЕНИЯ

Профилометр
Семейства устройств π-Shaper и foXXus насчитывают более 70-ти моделей: почти 100% эффективность, спектр от УФ до дальнего ИК, мощности от мВт до нескольких кВт, решения для непрерывных и импульсных лазеров, модели с ахроматическим дизайном, афокальные системы и коллиматоры, простота юстировки и установки в уже существующих системах.

AdlOptica GmbH - работает в области оптических систем преобразования лазерного излучения π-Shaper, например гауссовых пучков в пучки с равномерным распределением интенсивности (Laser Beam Shaping), а также многофокусный оптики foXXus, которые используются в разнообразных приложениях в науке, промышленности и медицине.

ПАРАМЕТРЫ ПУЧКА ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

Стандартные или сделанные на заказ лазерные расширители пучка, выполненные по схеме Галилея, имеют уникальную механическую конструкцию со скользящей линзой, обеспечивающую высокую стабильность наведения и минимальные размеры. Расширители пучка рассчитаны на необходимую длину волны каждый из расширителей пучка имеет возможность регулировки расходности. Все оптические элементы расширителей пучка выполнены из плавленого кремния и обеспечивает стабильную и надежную производительность даже при использовании с лазерами высокой мощности.

Таблица: Параметры пучка

<table>
<thead>
<tr>
<th>Модель</th>
<th>MEX13</th>
<th>MEX210</th>
<th>MEX180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Длина волны</td>
<td>1064 нм (или другие в диапазоне от 240 нм до 2000 нм)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Увеличение</td>
<td>1-3х</td>
<td>2-10х</td>
<td>1-8х</td>
</tr>
<tr>
<td>Тип управления</td>
<td></td>
<td>Моторизованный</td>
<td></td>
</tr>
<tr>
<td>Расходность</td>
<td></td>
<td>Регулируемая</td>
<td></td>
</tr>
<tr>
<td>Стабильность</td>
<td></td>
<td>< 0,5 mrad</td>
<td></td>
</tr>
<tr>
<td>Входная апертура</td>
<td>8 мм</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Выходная апертура</td>
<td>22 мм</td>
<td>38 мм</td>
<td>38 мм</td>
</tr>
<tr>
<td>Дифракционный предел ограниченный макс. диаметр входного пучка</td>
<td>8,0(1х) - 6,0(3х) мм</td>
<td>12 (2х) - 3,5(10х) мм</td>
<td>12 (1х) - 4,5 (8х) мм</td>
</tr>
<tr>
<td>Число оптических элементов</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Габаритный размер, длина</td>
<td>140 мм</td>
<td>210 мм</td>
<td>245 мм</td>
</tr>
</tbody>
</table>

ОПТОГАМА Компания OPTOGAMA - разрабатывает и производит компактные системы для управления лазерным излучением, используемые для увеличения или уменьшения диаметра лазерного луча, контроля расходности луча и регулировки мощности лазера.

www.lenlasers.ru
СИСТЕМЫ ИЗМЕРЕНИЯ ХАРАКТЕРИСТИК ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

Системы профилирования позволяют получить разрешение до 0,1мкм, работать с пучком, диаметром всего 0,5 мкм. Компания предоставляет универсальное и интуитивно понятное ПО, обеспеченное бесплатными обновлениями по мере добавления новых функций.

Камеры профилирования
- Рабочий диапазон 190нм-14мкм
- USB 2.0/3.0
- Эффективная рабочая область до 15х20мм
- До 4,2Мп
- Разрешение 2048х2048
- Затвор строковый/кадровый
- Для импульсного/непрерывного излучения
- ПЗС/КМОП
- Режим автоматического запуска
- Отношение сигнала к среднеквадратичному значению шума до 2,500:1

DataRay Inc. — компания-производитель была основана в 1988 году, является производителем оборудования профилирования оптических пучков для всемирного сообщества фотоников. DataRay — это высокопрещизионные камеры, анализирующие пучки от ультрафиолетового до 16 мкм излучения и инструменты для визуализации по стандартам ISO 11146.

Щелевые профилометры
- Диапазон 190нм-3,9мкм
- USB 2.0
- Профили X-Y-Z плоскостей
- Для импульсного/непрерывного излучения
- Выборка и разрешение 0,1 мкм
- Для фокусированного/коллимированного излучения и прочие аксессуары

СИСТЕМЫ ИЗМЕРЕНИЯ ОПТИЧЕСКОЙ МОЩНОСТИ

Сенсоры

<table>
<thead>
<tr>
<th>Сенсоры</th>
<th>Диапазон</th>
<th>Мощность/Энергия</th>
<th>Доп. сведения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Фотодиодные</td>
<td>200нм – 1800нм</td>
<td>300фВт - 3Вт</td>
<td>Сферические версии для расходящихся пучков</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Быстродействие в 1,5мс</td>
</tr>
<tr>
<td>Термоэлектрические</td>
<td>150 нм – 20 мкм</td>
<td>300 фВт – 120 кВт</td>
<td></td>
</tr>
<tr>
<td>Пироэлектрические</td>
<td>0,15 - 12 мкм</td>
<td>0.05 мкДж – 10Дж</td>
<td>Для импульсных источников (25кГц)</td>
</tr>
<tr>
<td>Для IPL источников</td>
<td>0,25-2,2 мкм</td>
<td>300 Вт (или 2000Дж)</td>
<td>Для импульсных источников высокой мощности. С возможностью установки окна с гелем/жидкостями с разным показателем преломления</td>
</tr>
<tr>
<td>Для терагерцового диапазона</td>
<td>0,1-30 ТГц</td>
<td>100 нВт-3 Вт</td>
<td></td>
</tr>
</tbody>
</table>

Измерители
Двух/Четырехканальные/Стандартные

Компания Ophir предлагает самую широкую линейку измерителей оптической мощности. Сенсоры позволяют измерять излучение от 300 фемтоВатт до 120 килоВатт в широком диапазоне длин волн, работать с расходящимися и прерывистыми пучками, а также обладают дополнительными специальными функциями.
ЛАЗЕРНО-ОПТИЧЕСКИЕ КOMPОНЕНТЫ НА ПРИМЕРЕ ТГЦ СПЕКТРОМЕТРА
Введение
Нелинейно-оптические кристаллы используются для генерации гармоник, суммарных и разностных частот, а также для создания параметрических генераторов. На данный момент существует более сотни нелинейно-оптических кристаллов, однако в этой статье будут разобраны основные из них, которые нашли на данный момент наибольшее применение и охватывают широкий спектр нелинейно-оптических приложений. Все рассмотренные в статье кристаллы представлены в каталоге и доступны для заказа.

Кристалл KTP
KTP (K2TiO4, KTA) – двухосный нелинейно-оптический кристалл. KTP является одним из основных нелинейно-оптических кристаллов и широко используется в устройствах преобразования частоты, как в коммерческих, так и в специальных лазерах, включая лабораторные и медицинские системы, дамперы, лазары, оптические средства связи и промышленные системы. Кристалл KTP изображен на рис.1.

Рис. 1. Кристалл KTP

Диапазон прозрачности кристалла от 0.35 мкм до 4.5 мкм с полосой поглощения обертона ортофосфата на 3.5 мкм.

По сравнению с другими кристаллами для преобразования ближнего ИК диапазона (0.75 - 1.5 мкм) кристалл KTP обладает одним из лидирующих значений угловой и температурной ширины синхронизма, не гигроскопичен, но меньшими значениями порога оптического пробоя и спектральной ширины синхронизма в частиности для длин генерации второй гармоники (ГВГ) от 1.064 мкм.

Одним из немногих недостатков кристалла KTP является его восприимчивость к фотохроному повреждению (Gray track damage), которое происходит при воздействии импульсного или непрерывного лазерного излучения на длинах волн 532 и 514.5 нм. Это является проблемой особенно в приложениях с высокой мощностью лазерного излучения.

Чтобы исправить этот недостаток, разработан кристалл Gray tracking resistance KTP или GT، КТР. Характеристики кристалла GTR-KTP такие же, как у обычного кристалла KTP, кроме более низкого поглощения в диапазоне 350-550 нм, что в свою очередь позволяет достигать в кристалле GTR-KTP вдвое большей эффективности преобразования.

КТР является наиболее часто используемым материалом для удвоения частоты Nd: YAG и других лазеров, легированных Nd, особенно когда плотность мощности находится на низком или среднем уровне. КТР также используется для внутрирезонаторного получения (генерации) суммарной частоты Nd: YAG и диодных лазеров Кристалл KTP, на- качиваемый Nd лазерами, играет важную роль как параметрический источник лазерного излучения от видимых до среднего ИК диапазона (600нм - 4500нм).

Кристалл KTA
KTiOAsO4 (KTA) – положительный двухосный нелинейно-оптический кристалл. Диапазон прозрачности кристалла от 0.35 мкм до 5.2 мкм.

Основным преимуществом KTA по сравнению с KTP является расширенный спектр пропускания в области среднего ИК, и отсутствие значительного поглощения на длине волны 3.5 мкм. Кристалл KTA обладает также лучшими, по сравнению с KTP, нелинейно-оптическими и электрооптическими коэффициентами. Его низкая ионная проводимость приводит к более высокому порогу пробоя по сравнению с кристаллом KTR.

Кристалл KTA применяется для генерации второй гармоники, суммарных и разностных частот, а также параметрической генерации практически для всех длин волн в диапазоне прозрачности. Также данный кристалл находит применение в качестве электрооптического затвора, хотя и менее распространен, чем RTR.

Кристалл BVO
β-BaB2О4 (BVO) – отрицательный одноосный кристалл, выращиваемый методом из раствора в расплаве. Является важным кристаллом для преобразования лазерного излучения видимого и УФ диапазона, а также одним из наиболее эффективных удвоителей частоты перестраиваемых лазеров на красителях и на александрит. Кристалл BVO изображен на рис.2.

Рис. 2. Кристалл BVO

Диапазон прозрачности кристалла от 0.198 мкм до 3.5мкм

Достоинствами данного кристалла являются широкий спектральный диапазон реализации фазового синхронизма от 410 до 3500 нм; в шесть раз больший коэффициент эффективной нелинейности ГВГ (SHG) от 1.064 мкм, чем у KDP; относительно высокая температурная стабильность ΔТ=30 °С. Следовательно, данный кристалл может быть использован для суммирования частот мощных лазеров, излучение которых может приводить к нагреву нелинейного элемента.

Главным недостатком кристалла BVO является его гигроскопичность. В связи с этим рекомендуется нанесение
защитного покрытия или помещение в защитный корпус. ВВО относительно мягкий (4 по Моосу) и поэтому также требуется защита поляризованных поверхностей. У ВВО не-
большая угловая ширина синхронизма (Δθ=2–6 угл. мин.),
следовательно, требуется высокая точность настройки на
направление синхронизма, что не позволяет эффективно
использовать ВВО для ГВГ многомодовых лазеров и лазе-
ров со значительным расхождением луча, в частности по-
лупроводников лазеров.

Кристалл ВВО нашёл своё применение в генерации вто-
рой, третьей, четвертой и пятой гармоник Nd:YAG, Nd:YLF
лазеров, Ti: сапфировых и александритовых лазеров.

Кристалл LBO

LiB₃O₅ (LBO) – двухвйсный нелинейно-оптический кристалл.
Используется для ГВГ ближнего ИК излучения и параметри-
ческой генерации в видимом и ближнем ИК диапазонах.
Диапазон прозрачности кристалла от 0.155 мкм до 3.2 мкм.

Достоинствами кристалла LBO: широкий диапазон реа-
лизации фазового синхронизма для ГВГ (551 - 2600 нм). Хотя
кристалл КТР имеет большую эффективность преобразо-
вания для ГВГ в микроном диапазоне, преимущество LBO
заключается в отсутствии фотохромного поведения. В
результате выходная зелёная мощность не уменьшается
со временем. Кристалл LBO менее негироскопичен чем
кристалл ВВО и более твёрдый (6 по Моосу), рекоменду-
ется обеспечить сухие условия как для использования,
так и для его хранения. Большая угловая ширина синко-
низма (Δθ=1-4 град.), реализация некритического по углу
синхронизма, и маленькое значение угла сноса, позволяет
использовать этот кристалл для генерации гармоник
лазеров, имеющих большую расходимость. В кристалле
LBO может быть достигнут не только некритичный по углу
синхронизм, но также некритичный по длине волны фа-
зовый синхронизм. Данный факт позволяет использовать
кристалл LBO для ГВГ широкополосных лазеров и лазеров
с пико- и фемтосекундной длительностью импульса.

Недостатками кристалла является его низкая двулучепре-
ломляющая способность и как следствие невозможность
получения четвертой гармоники от Nd лазеров, а также
сильная температурная зависимость.

Кристалл LBO применяется в качестве параметрического
генератора, для ГВГ и ГГТ Nd: YAG и Nd: YLF лазеров с диод-
ной накачкой, а также лазеров с пико- и фемтосекундной
длительностью импульса.

Кристалл ВВО

ВВО₅ (BIBO) – двухвйсный моноклинный кристалл. Кри-
stалл ВВО представляет собой новый нелинейно-опти-
ческий кристалл, который имеет исключительно большой коэффициент эффективной нелинейности. Данный кри-
stалл подходит для преобразования ультрафиолета, ви-
dимого излучения, ближнего и среднего инфракрасного
излучения, а также ультракоротких (фемтосекундных) ла-
зерных импульсов.

Диапазон прозрачности кристалла от 0.19 мкм до 3.2 мкм.

Кристалл BIBO обладает большим коэффициентом эффек-
tивной нелинейности (в 3.5 – 4 раза выше, чем у LBO, и в
1.5 - 2 раза больше, чем у ВВО), высоким порогом повреж-
dения и низкой гироскопичностью.

Данный кристалл применяется для ГВГ и генерация тре-
тьей гармоники (ГГТ) на длинах волн 1064 нм, 1342 нм,
1319 нм, 914 нм и 946 нм.

Кристалл KDP DKDP

KH₂PO₄ (KDP) и KD₂PO₄ (DKDP) – отрицательный одноосный
кристалл. KDP (вместе со своим аналогом DKDP) является
одним из старейших нелинейно-оптических материалов.
DKDP является аналогом KDP с более высокой передачей
в ИК диапазоне благодаря дейтерированию. Данные кри-
stаллы обладают хорошим пропусканием в УФ диапазоне,
высоким порогом пробоя (KDP - 5 ГВ/см² и DKDP - 3 ГВ/
см²) и высоким двулучепреломлением, хотя их коэффици-
енты эффективной нелинейности относительно низки.

Кристалл KDP, DKDP изображен на рис.3.

Рис. 3. Кристалл KDP, DKDP

Диапазон прозрачности кристалла от 0.174 мкм до 1.57
мкм для KDP и от 0.2 мкм до 2.1 мкм для DKDP.

Кристаллы группы KDP могут быть получены больших раз-
меров (масса кристалла может достигать десятков кило-
грамм) и высокого оптического качества. В этих целях ис-
пользуются методы быстрого роста KDP - до 50 мм/сутки.

Основными недостатками кристаллов группы KDP явля-
ются их непрозрачность в ИК области спектра, малый ко-
eффициент эффективной нелинейности и повышенная
гигроскопичность. Поскольку поляризованный поверхность
может легко улавливать влагу, KDP следует хранить в сух-
хом состоянии (<50%) и в герметичном корпусе.

Кристаллы KDP и DKDP обычно используются для ГВГ, ГГТ
и генерация четвертой гармоники (ГГЧ) Nd:YAG лазера с
большой мощностью излучения при комнатной темпера-
tуре. Кроме того, они также являются отличными электро-
оптическими кристаллами с высоким электрооптически-
ми коэффициентами, широко используемыми в качестве
электрооптических затворов для модуляции добротности.

Кристалл LiNbO₃

LiNbO₃ (LN) – отрицательный одноосный кристалл. LiNbO₃ был одним из первых кристаллов, специально синтезиро-
ванных для нелинейного преобразования частоты. Кри-
stалл LiNbO₃ является одним из наиболее часто использу-
емых материалов в оптоэлектронике и для получения
оптических волноводов в интегральной оптике. Кристалл
LiNbO₃ изображен на рис.4.

Рис. 4. Кристалл LiNbO₃
Диапазон прозрачности кристалла от 0.40 мкм до 5.5 мкм.

Кристалл LiNbO₃ и обладает хорошей механической и химической стабильностью, однако, низкий порог оптического пробоя и наличие фототерфракции, ограничивает его использование в устройствах с высокой мощностью оптического излучения.

Кристалл LiNbO₃ широко используется в качестве ГВГ от длины волны ≥ 1 мкм и оптических параметрических генераторов с накачкой на длине волны 1064 нм. Кроме того, благодаря большим значениям электрооптических (ЕО) и акустооптических (АО) коэффициентов кристалл LiNbO₃ является наиболее часто используемым материалом для ячеек Поккела, модуляторов добротности и волноводных подложек в интегральной оптике.

Кристалл ZnGeP₂

ZnGeP₂ – положительный одноосный кристалл. Кристалл ZnGeP₂ представляет собой высокоэффективный нелинейно-оптический материал для параметрического преобразования излучения среднего и дальнего ИК диапазонов, а также терагерцового излучения. Диапазон прозрачности кристалла от 0.74 мкм до 12 мкм.

К основным эксплуатационным характеристикам ZnGeP₂ можно отнести высокий показатель эффективной нелинейности (примерно в 160 раз больше, чем у KDP); широкий спектральный диапазон реализации фазового синхронизма (1.7 – 11 мкм); высокий порог оптического пробоя; хорошая теплопроводность, обеспечивающая возможность работы с излучением высокой мощности; большие значения температурной, угловой и спектральной ширины синхронизма, обеспечивают легкую юстировку; хорошая механическая прочность, позволяющая без малейших ухищрений работать в условиях вибраций; стойкость кристаллов к условиям повышенной влажности и даже к агрессивным средам.

Совокупность указанных характеристик, делает кристалл ZnGeP₂ уникальным для нелинейно-оптических приложений.

Кристалл ZnGeP₂ нашёл широкое применение для преобразования излучения CO₂ лазера, генерации суммарной частоты излучения CO и CO₂ лазеров, а также параметрической генерации в среднем ИК диапазоне при накачке эрбиевым и гольмийевым лазерами.

Кристалл GaSe

GaSe – отрицательный одноосный полупроводниковый кристалл. Кристалл GaSe сочетает в себе большие значения коэффициента эффективной нелинейности, высокий порог пробоя и широкий диапазон прозрачности. Данный кристалл способен на ГВГ в диапазоне длин волн от 6.0 до 12.0 мкм и параметрическую генерацию в диапазоне от 3.5 до 18 мкм. Также кристалл GaSe используются для генерации ТГц излучения и отличается широким спектральным диапазоном вплоть до 41 ТГц.

Диапазон прозрачности кристалла от 0.62 мкм до 20 мкм. Особенностью данного кристалла являются высокий порог оптического пробоя, большой коэффициент эффективной нелинейности (54 пм/В), широкий диапазон прозрачности и низкий коэффициент поглощения. Все это делает GaSe идеальным кристаллом для генерации широкополосного лазерного излучения в среднем ИК диапазоне.

Следует отметить, что из-за особенностей структуры, единственна возможность ориентации данных кристаллов - вдоль плоскости (001), что ограничивает их применение. Другим недостатком является относительная мягкость и хрупкость кристаллов GaSe.

Данный кристалл успешно используются для ГВГ CO и CO₂ лазеров, а также химических DF лазеров (λ=2.36 мкм); преобразования с повышением частоты CO и CO₂ лазеров до видимой области спектра; генерации ИК импульсов с помощью смешения разностных частот неодимового и лазеров на красителях или лазера на (F-)центрах; оптической параметрической генерации в диапазоне 3.5 - 18 мкм. Тонкие пластины GaSe используются для генерации ТГц излучения.

Кристалл AgGaS₂ и AgGaSe₂

AgGaS₂ и AgGaSe₂ – отрицательные одноосные кристаллы. AgGaS₂ и AgGaSe₂ являются одними из наиболее распространённых нелинейно-оптических кристаллов, коммерчески доступных для генераций гармоник и параметрической генерации в среднем и дальнем ИК диапазоне, особенно для газовых CO₂ лазеров, благодаря большому коэффициенту эффективной нелинейности и высокой пропускной способности в ИК диапазоне. Кристалл AgGaS₂ и AgGaSe₂ изображен на рис.5.

Диапазон прозрачности кристалла от 0.47 мкм до 13 мкм для AgGaS₂ и от 0.71 мкм до 19 мкм для AgGaSe₂.

Кристаллы AgGaS₂ и AgGaSe₂, эффективно используются в оптических параметрических генераторах с накачкой Nd:YAG лазером; в различных экспериментах с генерацией разностных частот диодных, Ti:Sapphire, Nd:YAG и ИК лазеров на красителях в диапазоне длин волн от 3 до 12 мкм; непосредственно в для генерации второй гармоники CO₂ лазеров.

Тонкие пластины кристаллов AgGaS₂ и AgGaSe₂ часто используются для генерации сверхвысоких импульсов в среднем ИК диапазоне с помощью генерации разностных частот, используя импульсы с длинами волн в ближнем ИК диапазоне.

Вывод

В каталоге представлены не только наиболее популярные кристаллы для параметрических преобразований (LBO, KTP, KDP, LiNbO₃), но также кристаллы, появившиеся на рынке относительно недавно (BIBO, CLBO, PPKTP), однако обладающие большим потенциалом и возможностями в приложениях преобразования длин волн лазерного излучения.
ОБОРУДОВАНИЕ

Волоконно — оптические компоненты для передачи излучения, а также создания собственных лазеров и устройств.

Источники лазерного излучения для накачки: диоды, линейки и матрицы.

Компоненты для модуляции, управления детектирования и преобразования лазерного излучения: элементы на объемных и волоконных Брэгговских решетках, фазовые маски, дифракционные решетки, акусто — и электро — оптические модуляторы. Фотодиоды, трансиверы, переключатели.

Компоненты для области радиофотоники.

СЕРВИС

Тестирование волоконно-оптических компонентов

ВАРИАНТЫ РЕШЕНИЙ

Схема генерации терагерцового излучения

Схема импульсного туннельного лазера

Схема по сенсорике: Лазерный датчик для измерения температуры и деформации

Схема твердотельного лазера

Схема передачи ВЧ/СВЧ сигнала по волокну

СТАТЬИ

Широкополосные модовые мультиплексоры. Альтернативное решение для телекоммуникаций и научных исследований.

Исследование надежности диодных лазеров с несколькими одиночными излучателями высокого уровня яркости.
«Ленинградские лазерные системы» позиционирует себя как молодое научно-исследовательское и производственное предприятие. Получив огромный опыт работы с различными государственными и коммерческими организациями нашей страны, компания ЛЛС готова предоставить услуги консалтинга, разработки и изготовления волоконных лазеров и усилителей различной мощности.

С июня 2018 года «Ленинградские лазерные системы» является резидентом Технопарка ИТМО. На базе технопарка создана собственная лаборатория для проведения исследований компонентной базы, измерений и создания волоконных лазеров.

Волоконно-оптические компоненты обеспечивают передачу, управление, распределение и изменение излучения во многих системах, основой которых является оптическое волокно. «Ленинградские Лазерные Системы» предлагает волокна и волоконные компоненты для любых применений:

- Высокомощные лазеры и усилители
- Системы мониторинга
- Системы сенсорики
- Медицина
- Телекоммуникации
- Научные исследования

Компания ЛЛС провела собственное исследование рынка производителей волоконных компонентов с точки зрения качества, цены и сроков производства аналогичных компонентов. Сформировав обширную базу и проведя испытания продукции, мы готовы поделиться своими знаниями с нашими заказчиками и предложить самое оптимальное решение под конкретную задачу, исходя из ваших потребностей.

Для серийных производств и предприятий, которым необходимо подтверждение высокого качества продукции, компания ЛЛС предлагает услуги разработки и выпуска технических условий на волоконно-оптические компоненты для различных применений, а также изготовление элементов под технические требования проекта. Для отечественных разработок и исследований были подготовлены технические условия (ТУ) на высокомощные волоконные компоненты, коллиматоры и сплавные оптоволоконные компоненты.
Компания «Ленинградские лазерные системы» заключила договор сотрудничества с компанией KS Photonics.
Компания KS Photonics предлагает уникальные решения для исследовательской деятельности в области телекоммуникаций и оптических датчиков.

Перестраиваемые разветвители, SM и PM версии
Перестраиваемый разветвитель имеет полностью волоконную конструкцию и обеспечивает диапазон перестройки от 0 до 100% с минимальными оптическими потерями. Основа – полированые оптические волокна, где коэффициент перестройки настраивается путем смещения одной сердцевины относительно другой.

Перестраиваемый акустооптический фильтр
Акустооптический перестраиваемый фильтр обеспечивает высокоэффективную фильтрацию длин волн с практически полным отсутствием оптических потерь.

Перестраиваемые длиннопериодные решетки
Диапазон перестройки составляет от 300 до 900 микрон. Такие решетки могут использоваться для объединения оптических сигналов между симметричными модами и антисимметричными модами, а также коэффициентом объединения от 0 до 100%.

Модовый разветвитель
Модовый разветвитель преобразует моды низших порядков (LP01) в одномодовом волокне в желаемые моды высших порядков в маломодовом волокне и наоборот.

Модовый мультиплексор
Устройство демонстрирует высокую эффективность объединения и коэффициент экстинкции. Также имеется режим добавления мод, если это необходимо.

И прочие компоненты и системы

Компания KS Photonics предлагает уникальные решения для исследовательской деятельности в области телекоммуникаций и оптических датчиков.
Высокомощные пассивные волоконные компоненты для волоконных лазеров и усилителей

- Высокомощные изоляторы (до 30 кВт импульсной мощности)
 - мощность от 500 мВт до 100 Вт
- Кабели CPS (с волоконным фильтром оболочки)
 - мощность до 800 Вт
- Кабели MFA (с фильтром поля моды)
 - для схем прямой и обратной геометрии
- Высокомощные кабели
 - наконечники для волокна, наконечник миниатюрной версии SMA, кабели версии QBH
 - мощность до 20 кВт

Высокомощные объединители накачки для волоконных лазеров и усилителей

- Объединители накачки Nx1
 - применимы для работы с лазерными диодами, различными лазерами, в том числе и RGB
 - N= 2,3…61
 - до 10 кВт
- Объединители накачки (N+1)x1
 - применимы для работы с усилителями MOPA
 - N= 1,2,6…60
 - до 1,3 кВт/на порт
- Высокомощные объединители сигнала версии Nx1
 - объединяет несколько волоконных лазерных модулей в многомодовый кабель вывода
 - по запросу доступна функция красного лазерного направляющего (laser pilot)
 - доступна 19-ти дюймовая версия с водяным охлаждением
 - операционная мощность до 6 кВт
 - доступен высокомощный кабель вывода

Доступны различные объединители, выполненные по индивидуальному заказу

- объединители накачки NxM
- активные объединители
- по техническому заданию

Компоненты с сохранением поляризации

- Спавные объединители
 - коэффициенты деления 0.1-99.9 и 50:50
 - диапазон длин волн 532-2000 нм
 - 1х2, 1х3 и 1хN
 - рабочая мощность до 40 - 100 Вт
 - компактный корпус
 - с расширенным температурным диапазоном от -55°C до +85°C
- PM микрооптика
 - различные материалы оболочки
 - пара SM/PM коллиматоров
 - высокомощные версии, различный диапазон длин волн
- PM коннекторы/патчкорды/питгейлы
 - доступный диапазон длии (450 - 1550 нм)
 - различные типы коннекторов FC, SC, LC, ST и др.
 - работа с высокомощным излучением
- Изоляторы
 - Изоляторы на разные длины волн 650-2000 нм
 - Различные структуры: Free space, expander, in-line
 - Структуры-гидриды: с отводом, с полосовым фильтром,
 со спектральным уплотнителем (WDM)
 - Все версии доступны с сохранением поляризации
- Спектральные уплотнители(WDM)
 - Лазерный направляющий (655/1064 нм)
 - DWDM/CWDM компоненты
 - WDM на специальный длины волн 980/1064 нм,
 1064/1550 нм, 1550/1625 нм, 1480/1550 нм, 980/1550 нм,
 1310/1550 нм (другие конфигурации по запросу)
 - Все версии доступны с сохранением поляризации

Пассивные волоконно-оптические компоненты для телекоммуникаций

- Спавные объединители / WDM
 - самые компактные в мире 1.02х12.5 мм
 - объем производства 120 тыс.шт./месяц
 - рабочая мощность до 40 Вт
- Модули волоконных/гибридных компонентов
 - каберы/MTP/MPO, гибридные
 - различные варианты объединения
 и компоновки микрооптики
 - LC, SC, MPO, MTP интерфейсы
 с низким потреблением

Lightcomm Technology — производитель волоконно-оптических компонентов с опытом работы более 18 лет. Компания имеет собственный завод с полным производственным циклом: от момента разработки до получения готового продукта. Компания имеет широкий спектр волоконных компонентов, а также изготавливает устройства под конкретные параметры заказчика. Специализируется на разработке и производстве пассивных и активных волоконных компонентов для лазеров, коммуникаций и зондирования.
ОПТИЧЕСКИЕ ВОЛОКНА

СПЕЦИАЛЬНЫЕ ВОЛОКНА

Компания Ленинградские Лазерные Системы предлагает различные специальные волокна от зарубежных и отечественных производителей. В нашем каталоге представлен широкий спектр продуктов, включая

▶ Активные волокна и активные волокна с сохранением поляризации (PM):
 • Иттербий
 • Эрбиий
 • Эрбиий-Иттербий
 • Тулий
 • Неодим
 • Гольмий
 • Самарий

▶ Фотонно-кристаллические волокна
▶ Транспортные волокна
▶ Нелинейные волокна
▶ Аттенюирующие волокна
▶ Сцинтиляционные волокна
▶ Полые волокна
▶ Волокна для ИК-диапазона
▶ Фоточувствительные волокна
▶ Волокна с сохранением поляризации
▶ ZBLAN-волокна
▶ Высокотемпературные волокна
▶ Нелинейные волокна
▶ Многосердцевинные волокна
▶ Высокотемпературные волокна
▶ Волокна с металлическим покрытием
▶ Волокна с большой числовой апертурой
▶ Волокна для передачи излучения с плоским фронтом распределения интенсивности
▶ Радиационно-стойкие волокна (SM/MM)

ОПТИЧЕСКИЕ ПРЕФОРМЫ

Компания ЛЛС подписала дистрибьюторские соглашения на поставку оптических преформ. Теперь к закупке стали доступны готовые преформы для вытяжки волокон, как активных, так и пассивных.

Также доступны заготовки, кварцевые трубы, стержни

ПРИМЕР ХАРАКТЕРИСТИК АКТИВНОЙ ПРЕФОРМЫ

<table>
<thead>
<tr>
<th>PRFY075-10/125-DC-HA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Числовая апертура сердцевины NA</td>
<td>0.075±0.005</td>
</tr>
<tr>
<td>Поглощение по оболочке в вытянутом волокне (дБ/м)</td>
<td>1.7±0.2 (915нм)</td>
</tr>
<tr>
<td>Внешний диаметр (мм)</td>
<td>25±2</td>
</tr>
<tr>
<td>Длина (мм)</td>
<td>300±50</td>
</tr>
<tr>
<td>Форма</td>
<td>Восьмиугольник</td>
</tr>
</tbody>
</table>

www.lenlasers.ru
ГЕНЕРАЦИЯ ИЗЛУЧЕНИЯ ТЕРАГЕРЦОВОГО ДИАПАЗОНА

Компания ЛЛС предлагает нестандартные волоконные компоненты и решения для генерации излучения терагерцового диапазона или для научных исследований.

- Задающим генератором выступает волоконный лазер с пассивной синхронизацией мод на 2D-материалах
 - Полированные сбоку волокна (SM/PM версии)
 - Одноступенчатый поляризатор
 - Волоконные делители и спектральные уплотнители с сохранением поляризации (PM)
- Задающий диод от II-VI Laser enterprise
- Диоды накачки BWT Beijing
- Активные волокна с сохранением поляризации (Er/Er-Yb)
- Преобразующая ТГц антенна с волоконным выводом
Компания ЛЛС предлагает волоконные компоненты и волокна российского производства:

- Объединители накачки
- Устройство вывода излучения накачки из оболочки волокна
- Спектральные уплотнители WDM,
- Волоконные брегговские решетки
- Активное туплевое волокно

В качестве накачки выступают диоды от компании BWT Beijing, 793 нм (до 80 Вт)

Интерес к разработке стабильных источников, излучающих в среднем ИК диапазоне, связан со специальными применением в следующих областях:

- Дистанционное зондирование
- Спектроскопия
- Медицина
- Обработка прозрачных материалов
- Научные исследования

Волоконные лазеры, легированные тулием, с рабочим диапазоном от 1,7 до 2,1 мкм, можно считать одними из наиболее важных источников инфракрасного лазерного излучения. Данные типы лазеров активно исследуются и развиваются в течение последних нескольких лет.
Введение
Существует мнение, что пропускная способность оптоволоконной линии при передаче сигналов методом мультиплексирования с временным разделением и мультиплексирования с разделением по длине волн, достигла своего предела[1]. Однако метод пространственного разделения каналов все еще остается не полностью реализованным. Двумя популярными подходами являются Space division multiplexing (SDM) – разделение по пространству, реализованное на основе многосердцевинных волокон (например, от компании OFS) и Mode Division multiplexing (MDM) – мультиплексирование с разделением мод на основе много сердцевинных волокон (OFS)

Принцип работы селективного модового объединителя
В работе [5] предложена структура и основные принципы пространственного модового объединителя. Объединитель представляет собой конструкцию из маломодового и одномодового волокна, спаренных сбоку и закрепленных рядом друг с другом в кварце со сходным показателем преломления (рис. 3).

Когда постоянная распространения и, следовательно, показатель преломления (n_e) для распространяющихся мод в SM волокне совпадает с распространяющимися модами в FM волокне, между этими модами происходит эффективное соединение в экранирующем поле. Идеальное сцепление в маломодовых волокнах невозможно по причине фазового рассинхронизма. Практически идеальное сцепление возможно с изоляцией высших мод, как в экспериментах [5,6]. Ключевой параметр является согласование фаз соединяемых мод.

Излучение заводится через SM волокно и сцепляется в FM волокне с соответствующей модой LP$_{in}$. И наоборот, если в моды LP$_{in}$ зашиты в FM волокне, излучение также должно появиться в SM волокне при условии, что условие фазового соответствия выполнено. Чтобы получить широкополосную операцию, n_e должен быть одинаковыми в широком спектральном диапазоне. При использовании стандартного SM волокна, его n_e не соответствовал n_e для FM волокна во всем рабочем диапазоне длин волн, соответственно, не позволяет использовать объединитель в широком диапазоне длин волн. Другой подход основан на тейлорированной структуре, которая обеспечивает ограничения, налагаемого нелинейным эффектом в DWDM-системах.

Рисунок 1 – Разделение каналов по пространству, реализованное на основе много сердцевинных волокон (OFS)

Рисунок 2 – Мультиплексирование с разделением мод [2]

Во втором случае используется маломодовое оптическое волокно (FMF) с сердцевиной, в которой распространяются несколько поляризационных или пространственных мод [3,4]

Эти методы потенциально могут увеличить пропускную способность линии почти на порядок и, по-видимому, являются перспективными решениями для преодоления ограничений, налагаемых нелинейным эффектом в DWDM-системах.

Рисунок 3 – Структура и вид модового объединителя/делителя

Когда постоянная распространения и, следовательно, показатель преломления (n_e) для распространяющихся мод в SM волокне совпадает с распространяющимися модами в FM волокне, между этими модами происходит эффективное соединение в экранирующем поле. Идеальное сцепление в маломодовых волокнах невозможно по причине фазового рассинхронизма. Практически идеальное сцепление возможно с изоляцией высших мод, как в экспериментах [5,6]. Ключевой параметр является согласованием фаз соединяемых мод.

Излучение заводится через SM волокно и сцепляется в FM волокне с соответствующей модой LP$_{in}$. И наоборот, если в моды LP$_{in}$ зашиты в FM волокне, излучение также должно появиться в SM волокне при условии, что условие фазового соответствия выполнено. Чтобы получить широкополосную операцию, n_e должен быть одинаковыми в широком спектральном диапазоне. При использовании стандартного SM волокна, его n_e не соответствовал n_e для FM волокна во всем рабочем диапазоне длин волн, соответственно, не позволяет использовать объединитель в широком диапазоне длин волн. Другой подход основан на тейлорированной структуре, которая обеспечивает...
вает гораздо лучшую стабильность, однако она сложно реализуема, особенно в каскадной структуре.

Определение показателя преломления(ПП)
Измерение ПП для мод имеет важное значение для изготовления делителя. Измерение производится через призму, как показано на рисунке 4

Экранирующее поле протекающих мод в области поляризованных волокон проникает в призму, и в зависимости от отклонения угла мы можем определить n_{eff}

$$n_{eff} = \sqrt{(n_p^2 - \sin^2 \theta)}$$

Где n_p – показатель преломления призмы. На рисунке 4б измеренный график интенсивности излучаемого света в зависимости от высоты экрана (h) для мод в волокне FM на длине волны 1550 нм.

На рисунке 5 изображены графики измеренного ПП для различных мод в зависимости от длины волны (1515-1590 нм) и используемых волокон.

В качестве примера на рис.5 (b) изображена зависимость ПП от длины волны для моды LP$_{01}$ в FM волокне (красная линия) по сравнению с результатирующим режимом в SM волокне (темно-синяя линия), показывающая хорошее совпадение. Для сравнения показаны значения для согласования в стандартном SM волокне, где можно увидеть большое несоответствие (зеленая линия).

Волокна в эксперименте имели номинальные NA в диапазоне 0,2-0,3. Сужение волокна проводилось путем нагрева и вытягивания (теипирования), что уменьшает n_{eff} (7). Правильный диаметр конуса рассчитывали путем численного моделирования распространения мод в SM волокне (8). Оптимальный диаметр конуса определяли после эксперимента.

4. Эффективность соединения мод
Взаимодействие мод между модами более высокого порядка (HOM) в маломодовом волокне (FMF) и модами LP$_{01}$ в одномодовом волокне (SMF) описывается теорией связи мод [9]:

$$P_{out} = P_{in} \frac{k^2}{k^2 + \delta^2} \sin^2 \left[\sqrt{(k^2 - \delta^2)z} \right]$$

где P_{in} и P_{out} – входная мощность и мощность соединения соответственно, k – постоянная соединения, z – длина взаимодействия и $\delta = \Delta/2 \beta$ – постоянная распространения волны (β) между модами в FMF и SM волноке. Согласно уравнению 2, разность в n_{eff} между модой (target mode) в маломодовом волокне и модой LP$_{01}$ в одномодовом волокне не должна быть минимизирована для увеличения мощности взаимодействия. Например, когда значение δ составляет 1,6 мкм (что соответствует нашему случаю), и $kz = \pi/2$ при 1550 нм, значение δ должно быть меньше 2,2 x 10-4, тем самым коэффициент соединения составит 80%. В данной работе эффективность соединения (Ce) определяется отношением выходной мощности моды в FM волнокне и выходной мощностью моды LP$_{01}$ в SM волнокне.

Остальная часть входной мощности пришла на нежелательную моду LP$_{01}$ (8.2%), потери в точках сращивания (номинально 6-10%) и некоторые оставшиеся моды в SMF.
Измерение проводилось следующим способом. Входная мощность была измерена при помощи измерителя мощности. Общая выходная мощность ВМ волновода, которую измеряли также с помощью измерителя мощности, может содержать сигналы от нежелательных мод. Для измерения потерь при изгибе на выходном маломодовом волноводе была сформирована петля. Результаты показали, что при диаметре изгиба волновода 20 мм потери составляют 20 дБ для моды LP(0) без существенного влияния на другие моды. В случае с модой LP(1), потери на изгибе составляют менее 0,1 дБ при диаметре 20 мм и 17 дБ при требуемом диаметре изгиба – 6 мм. Значения потерь на изгибе для мод LP(0) и LP(1) были незначительными. Деградация в L – диапазоне на рисунке 6 (b) считается из конечной спектральной полосы пропускания экранирующего поля разветвителя, т.е. неидеального согласования ПП.

6. Характеристики шестимодового мультиплексора

Структура шестимодового мультиплексора схожа со структурой, представленной на рисунке 6. Для согласования ПП для моды LP(0) в одномодовом волноводе с модами высших порядков в ВМ волноводе SM волновод подвергалось телепередаче. ВМ волновод, легированное германием, со ступенчатым индексом ПП использовалось для передачи шести мод LP(0), LP(1) и LP(2) и LP(3) и LP(4). Каждое волновод заключено в кварцевый блок, а оболочка волновода частично сплошная. Стандартные эффективности объединения мод LP(0), LP(2), and LP(3) были 80%, 70%, и 80% в С-диапазоне. Полная конструкция представлена на рисунке 7.

Рисунок 6 – Каскадные селективные разветвители для формирования мультиплексора с разделением мод.

Коэффициент экстинкции RE для мод LP(0)

\[R_E = 10 \log \left(\frac{P_{\text{target}}}{P_{\text{other}}} \right) \]

где \(P_{\text{target}} \) – оптическая мощность соединения с выбранной модой, \(P_{\text{other}} \) – оптическая мощность соединения с нежелательными модами.

Рисунок 7 – A) модовый мультиплексор. B) модовый демультиплексор.

Для измерения характеристик использовался сканирующий интерферометр. Он измерял матрицу передаточных функций амплитуды и фазы между вводом и выводом. Модовые потери (MDL) анализировалась разложением сингулярных значений из измеренной матрицы.

Схема измерения представлена на рисунке 8.
7. Постановка эксперимента. Передача данных.
На рисунке 9 изображена экспериментальная установка для передачи данных методом модового разделения каналов. Тридцать каналов с шагом 100 ГЦ в С-диапазоне (1534,25-1557,36 нм) генерировались лазерами с рассредоточенной обратной связью (DFB). Переключатель с выборкой по длине волны использовался для выравнивания оптической мощности во всех каналах. Каждая группа каналов усиливалась эрбиевым усилителем, а затем направлялась на IQ-модулятор. Оба IQ-модулятора управлялись независимыми битовыми последовательностями диапазонов дают 216 символов, сгенерированных цифровыми аналоговыми преобразователями 6 гига выборок/с (ЦАП). Модуляторы были с волновыми вводами. Сигнальные поступают на стадию мультиплексирования с разделением поляризации, где два поляризационных разделения задерживаются на 382 нсек. Полученный поляризованый квадратурный фазовый свдвиг (120 Гбит/с (DP-QPSK)) был разделен на шесть копий с относительными задержками 0, 50, 100, 150, 200 и 250 нсек. Трость декоррелированных сигналов были подключены к волновому вводу 6-модового мультиплексора.

6-режимные мультиплексированные сигналы подавались в циркуляционный контур. Для передачи сигналов по многообразным циклам использовался акустооптический переключатель (AOS). Такие оптические компоненты, как AOS, линзы и световодители (BS) были установлены для поддержания диапазона нескольких мод.

Все четыре порта петли были с волокном со ступенчатым профилем ПП, поддерживающими приблизительно 15/9 мод. Затем эти волокна тейпировали (вытяжка до 1 м), что дало нам 6-ти модовое волокно. Данный вытяжка была нацелена на уменьшение количества мод, передающих сигнал.

![Рисунок 9 — Схема экспериментальной передачи данных, где ТЛД-перестраиваемый лазерный диод, ДФБ — лазер с рассредоточенной обратной связью, ВСС — свч с разделением по длине волны, I-Q IQ модулятор, ДАЦ-ЦАП, РВС-поляризационный разветвитель, МУХ-/ДМУХ — мультиплексор/демультиплексор, ММ-ЭДФА — многомодовое волокно, лазерное эрбиевое, АОС — акустооптический переключатель, ВД — блокировщик длины волн, ФМФ — маломодовое волокно, ПД-СРХ — когерентный приемник с поляризационным разделением, зо-локальный осциллограф, ОС — осциллограф.](image)

Линия передачи составляла 58,5 км с усилением по MM-ЭДФА. MM-ЭДФА, (c), использовался в качестве линейного усилителя для компенсации потерь в волокне и других оптических компонентов в линии. Сигнальные были направлены сквозь поляризационный делитель (BS), а затем демультиплексированы на 6 мод. Тестируемый канал длины волны фильтровали с помощью блока (WB). Шесть когерентных приемников с поляризационным разрешением (PD-СРХ) использовались для детектирования сигналов. Итого двадцать четыре электрических сигнала в интервале времени 100 мкс были одновременно переданы на модульный цифровой осциллограф, работающий со скоростью дискретизации 40 Гц / с и полосой пропускания 20 Гц.

Также для линии был измерен параметр BER - Достоверность передачи данных, составивший для моды LP01, менее 2*10^-5 во всем диапазоне дли волн.

6. Заключение
В работе продемонстрирован принцип работы волоконного модового мультиплексора на основе каскадных модоселективных разветвителей с широким дисперсионным пропусканием. Эффективность соединения на всем диапазоне дли волны от 1515 до 1590 нм варьировалась от 87% для моды LP01 , в худшем случае - более 55% для моды LP21. Значительно улучшенная производительность была достигнута путем сопоставления n_0 - по рабочей длине волны для маломодового и одномодового волокна. Это устройство может быть полезно для дальнейшей разработки мультиплексированных систем связи с высокой пропускной способностью. Эксперимент показал, что передача информации методом мультиплексирования мод возможна. Также можно ожидать, что производительность мультиплексора может быть улучшена за счет эффективного мультиплексирования дегенеративных асимвметричных мод.

Список используемых источников

2. Сайт компании KS Photonics http://ksphotonics.com
8. Ромашова В.Б., Лин Б., Буров Н. «Высокомощные волоконно-оптические объединители», Фотоника 2018 вып.2

www.lenlasers.ru
Элементы на ВБР используются для разноплановых задач управления спектром и сенсорики.
Участвуя во множестве проектов и взаимодействуя с ведущими производителями отрасли, специалисты компании ЛИС готовы оказать помощь в подборе компонентов на ВБР для любых задач.

ПРИМЕНЕНИЕ ЭЛЕМЕНТОВ НА ВБР.
Достигаемые следующие параметры элементов:

<table>
<thead>
<tr>
<th>Общие характеристики</th>
</tr>
</thead>
<tbody>
<tr>
<td>Длина волны</td>
</tr>
<tr>
<td>Полоса</td>
</tr>
<tr>
<td>Отражение</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Исполнение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Бескорпусное исполнение;</td>
</tr>
<tr>
<td>Апермальный трубка;</td>
</tr>
<tr>
<td>Апермальный модуль с циркулятором;</td>
</tr>
<tr>
<td>Модуль с перестраиваемой решеткой</td>
</tr>
</tbody>
</table>

- Волоконные сенсоры и датчики
- Зеркала для высокомощных лазеров
- Фильтры для квантовых коммуникаций и радиофотоники
- Управление и стабилизация спектра источников света
- Расширители импульса для CPA лазеров
- Компенсаторы дисперсии для телекоммуникаций
- DWDM и GFF фильтры для телекоммуникаций

Узкополосные брэгговские фильтры
Помимо основных характеристик, при подборе фильтра важно определить следующее:
Конфигурация Но нужен доступ к проходящему, отраженному или к обоим сигналам?
Допуск Частота узкополосные фильтры имеют допуск (по центральной длине волны), сравнимый с полосой пропускания/отражения. В таких случаях целесообразно использовать перестраиваемый лазерный источник или перестраиваемый фильтр
Подавление боковых лепестков До 35 дБ; параметр должен подбираться в соответствии с другими параметрами, такими как полоса пропускания

Расширители импульса для сверхбыстрых лазеров (на основе CPA)
При подборе ВБР для расширения импульсов очень важно понимать, в какой схеме и с каким типом компрессоров они будут применяться, поэтому важно определить:

<table>
<thead>
<tr>
<th>Характеристики компрессора</th>
<th>Тип компрессора (ОБР или дифракционная решетка) Дисперсия, вносимая компрессором</th>
</tr>
</thead>
<tbody>
<tr>
<td>Параметры входного импульса</td>
<td>Длительность импульса Форма импульса (гауссова, параболическая, пользовательская)</td>
</tr>
<tr>
<td>Основные параметры</td>
<td>Центральная длина волны Полоса пропускания</td>
</tr>
<tr>
<td>Более высокие порядки дисперсии</td>
<td>При необходимости учтите все коэффициенты дисперсии системы (B2, B3 and B4)</td>
</tr>
</tbody>
</table>

Отражательные брэгговские решетки для мощных лазеров
При подборе оптимальной пары зеркал необходимо в первую очередь определить следующие параметры:

<table>
<thead>
<tr>
<th>Активный ион</th>
<th>Эрбий; Иттербий; Тулий</th>
</tr>
</thead>
<tbody>
<tr>
<td>Тип волокна</td>
<td>SMF; PMF; DCF; LMA</td>
</tr>
<tr>
<td>Мощность</td>
<td>До 3 кВт</td>
</tr>
</tbody>
</table>
Компонентная база
Высокомощные лазерные отражатели

<table>
<thead>
<tr>
<th>Длина волны</th>
<th>1 мкм; 1,5 мкм; 2 мкм</th>
</tr>
</thead>
<tbody>
<tr>
<td>Отражение HR</td>
<td>≥ 99.5%</td>
</tr>
<tr>
<td>Диаметр оболочки</td>
<td>Мощность накачки</td>
</tr>
<tr>
<td>125 мкм</td>
<td>800 Вт</td>
</tr>
<tr>
<td>250 мкм</td>
<td>2000 Вт</td>
</tr>
<tr>
<td>500 мкм</td>
<td>3000 Вт</td>
</tr>
<tr>
<td>OC: от 6 до 50%</td>
<td>Мощность сигнала</td>
</tr>
<tr>
<td>600 Вт</td>
<td>1400 Вт</td>
</tr>
<tr>
<td>2100 Вт</td>
<td></td>
</tr>
</tbody>
</table>

Элементы управления дисперсией

<table>
<thead>
<tr>
<th>Длина волны</th>
<th>Расширители импульсов для сверхбыстрых лазеров</th>
</tr>
</thead>
<tbody>
<tr>
<td>Полоса</td>
<td>Компенсаторы дисперсии</td>
</tr>
<tr>
<td>от 5 до 50 нм</td>
<td>Полный DWDM диапазон</td>
</tr>
<tr>
<td>Уширенные импульсы</td>
<td>до 300 Гц</td>
</tr>
<tr>
<td>от 500 пс до 10 нс</td>
<td></td>
</tr>
<tr>
<td>Настройка дисперсии</td>
<td>компенсация до 200 км</td>
</tr>
<tr>
<td>β2, β3 и β4</td>
<td></td>
</tr>
<tr>
<td>Температурный диапазон</td>
<td>от 20 до 50°C</td>
</tr>
<tr>
<td>от -40 до 85°C</td>
<td></td>
</tr>
</tbody>
</table>

Перестраиваемые волоконные брэгговские фильтры

<table>
<thead>
<tr>
<th>Узкополосные фильтры</th>
<th>Компенсаторы дисперсии</th>
</tr>
</thead>
<tbody>
<tr>
<td>Длина волны</td>
<td>1525 – 1565 нм</td>
</tr>
<tr>
<td>Полоса</td>
<td>от 2 до 50 Гц</td>
</tr>
<tr>
<td>Диапазон перестройки</td>
<td>до 40 Гц</td>
</tr>
<tr>
<td>Разрешение перестройки</td>
<td>0,25 ГГц</td>
</tr>
<tr>
<td>Вносимые потери</td>
<td>До 0,5 дБ</td>
</tr>
<tr>
<td>До 3 дБ</td>
<td></td>
</tr>
</tbody>
</table>

TeraXion

TeraXion — с 2000 г. компания является ведущим производителем и разработчиком современных оптических компонентов и модулей для высокоскоростной передачи данных по волоконно-оптическим линиям связи, волоконных лазеров и сенсорики. Ключевым достоинством компании TeraXion является более чем десятилетний опыт работы с волоконными брэгговскими решетками.

www.lenlasers.ru
Волоконные брегговские решетки

Применение: ВБР могут выступать в качестве чувствительного элемента волоконно-оптических датчиков, резонатора волоконных лазеров, компенсатора дисперсии, узкополосного фильтра.

ПРИМЕРЫ СТАНДАРТНЫХ ВБР

<table>
<thead>
<tr>
<th>Длина волны ВБР, нм</th>
<th>Применяемые световоды</th>
</tr>
</thead>
<tbody>
<tr>
<td>633</td>
<td>custom</td>
</tr>
<tr>
<td>852</td>
<td>Nufern 780HP</td>
</tr>
<tr>
<td>976</td>
<td>Nufern 1060XP; Nufern PS 1060</td>
</tr>
<tr>
<td>1030</td>
<td>Nufern 1060XP; Nufern PS 1060</td>
</tr>
<tr>
<td>1060</td>
<td>Nufern 1060XP; Nufern PS 1060</td>
</tr>
<tr>
<td>1064</td>
<td>Nufern 1060XP; Nufern PS 1060</td>
</tr>
<tr>
<td>1080,5</td>
<td>Nufern 1060XP; Nufern PS 1060</td>
</tr>
<tr>
<td>1125</td>
<td>Nufern 1060XP; Nufern PS 1060</td>
</tr>
<tr>
<td>1150</td>
<td>Nufern 1060XP; Nufern PS 1060</td>
</tr>
<tr>
<td>1511÷1588</td>
<td>Corning SMF 28e+</td>
</tr>
<tr>
<td>1650</td>
<td>Corning SMF 28e+</td>
</tr>
<tr>
<td>1900, 1908(new!)</td>
<td>Corning SMF 28e+</td>
</tr>
<tr>
<td>2300</td>
<td>Corning SMF 28e+</td>
</tr>
<tr>
<td>2750</td>
<td>Corning SMF 28e+</td>
</tr>
<tr>
<td>2840</td>
<td>Corning SMF 28e+</td>
</tr>
</tbody>
</table>

Другие волокна и длины волн также обсуждаются, возможное отражение до десятых долей нм (0,1нм) точность по центральной ДВ стандартная +-1нм.

Волоконные датчики

- Температуры (до 500°C)
- Деформации
- Перемещения
- Угла наклона
- Вибрации
- Давления
- Динамических процессов
Волоконные Брэгговские решетки активно применяются в качестве различных сенсоров. Данная схема содержит следующие компоненты:

- Лазер накачки на длине волны 1450 нм (максимальная мощность 0,6 Вт), например, от производителей 3SP Technologies и Furukawa
- Компоненты мультиплексирования (WDM) на 1450/1550 нм от компании «Ленинградские лазерные системы»
- Волокна с компенсацией дисперсии (DCF) от компании Ofs
- Одномодовое волокно SMF 28, например, от производителя Corning
- Брэгговские решетки с высокой отражательной способностью (90%), которые позволяют одновременно измерять деформацию и температуру, например, от компании Инверсия-Сенсор
- Анализатор оптического спектра (OSA) используется для обнаружения и отображения оптического сигнала
Дифракционные решетки и фазовые маски

<table>
<thead>
<tr>
<th>Градация дифракционных решеток</th>
<th>Диапазон длин волн (нм)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200 400 600 800 1000 1200 1400 1600 1800 2000 2200</td>
</tr>
</tbody>
</table>

Фазовые маски

Фазовые маски Ibsen Photonics предназначены для записи брэгговских решеток, изготовлены голографическим способом, что обеспечивает точность периода +/− 0.01 нм.
- Работа в +1/-1 и 0/-1 порядках дифракции.
- Период решетки: 400 - 2600 нм, 260 - 600 нм.
- Длина волны облучения: 193 - 800 нм.
- Чирп: 0 - 25 нм/см.

Кварцевые пропускающие дифракционные решетки

Кварцевые пропускающие дифракционные решетки изготовлены на поверхности кварцевой пластины голографическим способом с применением ионного травления.

Спектрометры Ibsen Photonics

- Серия FREEDOM. Ультракомпактные спектрометры с рабочим диапазоном 190 - 1100 нм.
- Серия ROCK. Спектрометры с высокой пропускной способностью и рабочим диапазоном 380 - 2200 нм.
- Серия EAGLE. Спектрометры с высокой разрешающей способностью и рабочим диапазоном 800 - 1100 нм.
- Серия I-MON. Компактные интегральные спектрометры для спектрального мониторинга в реальном времени, работающие в диапазонах 800 - 860 / 1275 - 1345 / 1510 - 1595 нм.

Мониторы опроса I-MON для систем FBG Sensing

Системы I-MON производят мониторинг спектра датчиков на основе BBR.
Представлены 3 серии мониторов I-MON: OEM, USB (встроенная электроника и программное обеспечение) и High Speed (позволяет проводить измерения до 35 кГц, поддерживающая при этом субпиксельное разрешение по длине волны). Каждая серия может быть предоставлена в разных диапазонах дли волн: 1550 нм, 1310 нм и 835 нм.

Ibsen Photonics – производитель кварцевых дифракционных решеток для сжатия оптических импульсов, фазовых масок и спектрометров. Возможно производство компонентов по конкретным параметрам заказчика.
Компания «Ленинградские лазерные системы» имеет большой опыт участия в разработке и сборке твердотельных лазеров. Благодаря обучению и постоянному взаимодействию с ведущими производителя в индустрии, наши специалисты готовы оказать грамотную консультацию и помощь с выбором компонентов для ваших задач.

Мы можем вам помочь с подбором:

Активных элементов

От ведущих Российских, Европейских и Китайских производителей

Лазерных диодов для накачки

Мы поможем вам определиться с мощностью и длиной волны накачки, размерами излучающего элемента, а также с системой охлаждения.

Драйверов для лазерных диодов

Исходя из ваших пожеланий о форме и длительности выходного излучения.

«ЛЛС» также предлагает услуги по производству готовых кванторонов на зарубежной или отечественной элементной базе по техническому заданию.

Для создания квантора нам необходимо уточнить у вас:

- Размеры и характеристики активного элемента
- Желаемую мощность, тип и форму излучения

Возможные параметры

<table>
<thead>
<tr>
<th>Активный элемент</th>
<th>Nd:YAG, Nd:YLF, Nd:YAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Диаметр активного элемента (X) [мм]</td>
<td>2...5</td>
</tr>
<tr>
<td>Длина активного элемента [мм]</td>
<td>50</td>
</tr>
<tr>
<td>Максимальная импульсная мощность накачки [Вт]</td>
<td>4000</td>
</tr>
<tr>
<td>Максимальная длительность импульса накачки [мкс]</td>
<td>500</td>
</tr>
<tr>
<td>Максимальная частота следования импульсов накачки [Гц]</td>
<td>100</td>
</tr>
<tr>
<td>Максимальная средняя мощность накачки [Вт]</td>
<td>200</td>
</tr>
<tr>
<td>Габаритные размеры (D×W×H) [ммхммхмм]</td>
<td>62×62×54</td>
</tr>
<tr>
<td>Масса [г]</td>
<td>500</td>
</tr>
</tbody>
</table>
ОДНОМОДОВЫЕ ЛАЗЕРЫ, ОДИНОЧНЫЕ ИЗЛУЧАТЕЛИ И ЧИПЫ

Одиночные чипы лазерных диодов
Одиночные чипы лазерных диодов повсеместно используются в индустриальных и медицинских применениях, где требуется высокая мощность и высокая эффективность ввода излучения в волокно.

<table>
<thead>
<tr>
<th>Чипы на открытом радиаторе типа C-mount (CoC)</th>
<th>Чипы на сабмаунте (CoS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Длина волны (нм)</td>
<td>803 / 806 / 808</td>
</tr>
<tr>
<td>Допуск</td>
<td>±3 / ±2,5 нм</td>
</tr>
<tr>
<td>Ширина спектра</td>
<td>2 нм</td>
</tr>
<tr>
<td>Мощность / Ширина излучателя</td>
<td>4 Вт / 90 мкм</td>
</tr>
<tr>
<td>Расходящаяся (т. с)</td>
<td>от 6° x 27°</td>
</tr>
<tr>
<td>Поларизация</td>
<td>TE – доступны версии с улучшенной поляризацией (>95%)</td>
</tr>
</tbody>
</table>

Одномодовые лазерные диоды накачки
Одномодовые диоды накачки широко используются для телекоммуникационных (EDFA) и индустриальных задач. Стандартные решения от лидера отрасли, компании II-VI Inc., представлены ниже:

<table>
<thead>
<tr>
<th>Серия диодов</th>
<th>Серия CM</th>
<th>Серия CML</th>
<th>Серия UM</th>
<th>Серия LU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Длина волны</td>
<td>974 / 976 нм</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Мощность (мВт)</td>
<td>200 – 1000</td>
<td>200 – 600</td>
<td>300 – 500</td>
<td>100 – 300</td>
</tr>
<tr>
<td>Корпус</td>
<td>“mini-butterfly” 10-pin</td>
<td>8-pin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Охлаждение</td>
<td>25° TEC</td>
<td>40° TEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Волокно</td>
<td>SM / PM</td>
<td>SM</td>
<td>PM</td>
<td>PM</td>
</tr>
</tbody>
</table>

Задающие одномодовые лазерные диоды
Импульсные задающие лазерные диоды на 1 мкм широко применяются в волоконных лазерах типа MOPA, спектроскопии и сенсорике (системах DTS). Стандартные решения компании II-VI Inc. представлены ниже:

<table>
<thead>
<tr>
<th>Тип диодов</th>
<th>Диоды Фабри-Перо</th>
<th>POC (DFB) диоды</th>
</tr>
</thead>
<tbody>
<tr>
<td>Длина волны</td>
<td>1064 нм</td>
<td>1030 / 1064 нм</td>
</tr>
<tr>
<td>Мощность (CW)</td>
<td>700 мВт</td>
<td>200 мВт</td>
</tr>
<tr>
<td>Мощность импульса</td>
<td>1500 мВт</td>
<td>800 мВт</td>
</tr>
<tr>
<td>Длительность импульса</td>
<td>5 – 500 нс</td>
<td>до 100 нс</td>
</tr>
<tr>
<td>Волокно</td>
<td>PM</td>
<td></td>
</tr>
<tr>
<td>Корпус</td>
<td>“mini-butterfly” 10-pin</td>
<td></td>
</tr>
</tbody>
</table>

Фабрика II-VI Laser Enterprise – по праву считается лидером отрасли, предлагая надёжные и мощные лазерные диоды высокого качества.
МНОГОМОДОВЫЕ ЛАЗЕРНЫЕ ДИОДЫ НАКАЧКИ

<table>
<thead>
<tr>
<th>Длина волны, нм</th>
<th>Мощность в порт</th>
</tr>
</thead>
<tbody>
<tr>
<td>405</td>
<td>160 мВт</td>
</tr>
<tr>
<td>450</td>
<td>800 мВт</td>
</tr>
<tr>
<td>520</td>
<td>5 - 10 мВт</td>
</tr>
<tr>
<td>635</td>
<td>2 мВт – 5Вт</td>
</tr>
<tr>
<td>785 (стабилизированный)</td>
<td>600 мВт</td>
</tr>
<tr>
<td>793</td>
<td>4 – 80 Вт</td>
</tr>
<tr>
<td>808</td>
<td>4 – 150Вт</td>
</tr>
<tr>
<td>830</td>
<td>1 – 2 Вт</td>
</tr>
<tr>
<td>878,6</td>
<td>65 – 120 Вт</td>
</tr>
<tr>
<td>915</td>
<td>10 – 200Вт</td>
</tr>
<tr>
<td>940</td>
<td>10 – 200Вт</td>
</tr>
<tr>
<td>976</td>
<td>10 - 600 Вт</td>
</tr>
<tr>
<td>976 (стабилизированный)</td>
<td>3 - 300 Вт</td>
</tr>
<tr>
<td>1064</td>
<td>10 – 20 Вт</td>
</tr>
</tbody>
</table>

Подсистемы
- 450-550: 2мВт-300Вт
- 976-980: 50-3000Вт

Дополнения
- 405 нм / 830 нм
- 32/64/96/128 каналов СТР применения
- Чипы на саб-маунтах (COS)
- FC/SMA/ST/
- Волоконный

СХЕМА ТУЛЫЕВОГО ЛАЗЕРА

1. Волоконные резонаторы LightCenm 1942 нм
2. Диод накачки BWT 793 нм, 30-50Вт
3. Объединитель накачки (2+1) на 700-900 нм
4. Активное волокно Тераксия
5. Объединитель накачки (2+1) на 1900-2100 нм
6. Диод накачки BWT 793 нм, 30-50Вт
7. Волоконные резонаторы LightCenm 1942 нм
8. Измеритель мощности
9. Высокомощный коммутатор

BWT Beijing Ltd – Производитель специализируется на разработке и производстве комплектующих для высокопроизводительных диодных лазеров, мощностью до 600Вт в порт и их подсистем. Компания является ведущим производителем диодных лазеров с волоконным выходом и предлагает лазеры широкого диапазона длип волн (405-1064 нм), также со стабилизацией по длине волны.
Линейки одиночных излучателей

<table>
<thead>
<tr>
<th>Охлаждение за счёт теплопроводности</th>
<th>Микроканальное водяное охлаждение</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Полная линейка/половина линейки, 20-50 Вт (непрерывное излучение), 30-250 Вт (квазинепрерывное излучение) Припой «золото-олово»</td>
<td>• Полная линейка, 100-120 Вт (непрерывное излучение), 150-300 Вт (квазинепрерывное излучение)</td>
</tr>
<tr>
<td>• Длина волны: 808-976 нм</td>
<td>• Длина волны: 808-940 нм</td>
</tr>
<tr>
<td>• Применяется для накачки и дисплеев</td>
<td>• Применяется для накачки и дисплеев</td>
</tr>
</tbody>
</table>

Горизонтальные линейки лазерных диодов

- Число линеек: 2-25
- Выходная мощность: 100-120 Вт/линейка (непрерывное излучение) 150-300 Вт/линейка (квазинепрерывное излучение)
- Микроканальное водяное охлаждение
- Длина волны: 808 нм, 9xx нм
- Применение: боковая накачка

Вертикальные матрицы лазерных диодов

<table>
<thead>
<tr>
<th>Охлаждение за счёт теплопроводности</th>
<th>Водяное охлаждение</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Матрица из 2-24 линеек</td>
<td>• Матрица из 2-40 линеек</td>
</tr>
<tr>
<td>• До 300 Вт на линейку</td>
<td>• Простота обслуживания</td>
</tr>
<tr>
<td>• Длина волны: 808 нм, 9xx нм</td>
<td>• Применение: накачка, обработка материалов, медицинское оборудование</td>
</tr>
<tr>
<td>• Работа при высокой температуре, до 74°C</td>
<td>• Для квазинепрерывной работы</td>
</tr>
<tr>
<td>• Для освещения или накачки, большое отклонение для боковой накачки и дисплеев</td>
<td>• Монтаж на твердый припой</td>
</tr>
</tbody>
</table>

Коллиматоры и массивы коллиматоров

Линзы для ввода излучения в волокно

Массивы микролинз

Системы формирования пучка и гомогенизаторы

Лазерные модули и индустриальные лазеры

Focuslight — основной вид деятельности компании — разработка и производство лазерных диодных систем и высокомощных диодных модулей.

Лазерные диоды
- Диапазон длин волн: 532 – 1064 нм
- Тип: Одномодовый
- Мощность: до 1 Вт
- Тип корпуса: 14-pin бабочка

Лазерные модули со стабилизацией
- Диапазон длин волн: 405 – 1064 нм
- Мощность: от 12 мВт до 1 Вт
- Возможность волоконного вывода

Лазерные модули
- Диапазон длин волн: 375 – 1064 нм
- Мощность: от 0,2 до 1,5 Вт
- Стабилизация по длине волны и мощности

Системы для Рамановской спектроскопии и ТГц
- Спектральный диапазон: от ±5 см⁻¹ до 200 см⁻¹ (150 ТГц – 6 ТГц)

Лабораторный лазер
- Длина волны: 647, 785, 830, 1064 нм
- Мощность: до 1 Вт
- Ширина полосы: <0.1 нм
- Стабильность длины волны: +/- 0,005 нм
- Встроенный оптический переключатель

Объемные Брегговские решетки
- Центральная длина волны: в диапазоне от 400 до 2500 нм
- Точность длины волны: 0,5 нм
- Ширина полосы (FWHM): 0,2 нм

Элементы на ОБР для Рамановских спектрометров
- Система Нотч-фильтров (ширина спектрального перехода <10 см⁻¹, Оптическая плотность OD8)
- Нотч фильтр (ширина полосы <0,15 нм*см⁻¹, дифракционная эффективность >90%)
- Делитель пучка и ASE фильтр (ширина полосы <0.15 нм*см⁻¹, дифракционная эффективность >90%)

Объемные Брегговские решетки
- Централизованная длина волны: в диапазоне от 400 до 2700 нм
- Точность длины волны: +/-0,5 нм
- Ширина полосы (FWHM): 0,03 - 1 нм

Волоконно-оптические активные компоненты
- FB и DFB лазеры, 630 -1650 нм
- LED, 850 – 1550 нм
- Импульсные лазеры 1310 – 1650 нм
- VCSELs, 850 нм
- APD фотодетекторы, 1100 – 1650 нм, 800 – 1200 нм
- InGaAs PIN фотодиоды: 800 – 1700 нм, 1000 – 2600 нм, 1000 – 1600 нм и т. д.

Лазерные диоды со стабилизацией
- Диапазон длин волн: 405 – 1064 нм
- Мощность: от 12 мВт до 500 мВт
- Корпус: TO, Бабочка, RO

Фильтры на базе ОБР для создания ультрокоротких импульсов (фс)
- Длина волны: 1029 – 1064 нм, любая длина волны в диапазоне 400 – 2000 нм (под заказ)
- Скорость диспергирования: 50 нс/нм, 10/100 нс/нм (под заказ)
- Дифракционная эффективность: >90%
ЛАЗЕРНЫЕ ДИОДЫ ДЛЯ РАЗЛИЧНЫХ ПРИМЕНЕНИЙ

Компания «ЛПС» предлагает широкую линейку лазерных диодов для различных применений от ведущих мировых производителей.

КЛЮЧЕВЫЕ ХАРАКТЕРИСТИКИ И ОПЦИИ:
► Длины волн от 370 до 14000 нм
► Выход излучения в пространство или в волокно
► Различные варианты исполнения: OEM-модули, 14-pin «бабочка», TO-can, C-mount и другие
► Ширина спектральной линии: от нескольких нанометров до нескольких килогерц

Лазерные диоды для телекоммуникаций
• Диоды накачки для EDFA и рамановских усилителей
 \(\lambda = 1400 – 1500 \) нм, мощность до 600 мВт, встроенная ВБР/изолятор
• Лазерные диоды для передачи данных
 \(\lambda = 1240 – 1650 \) нм, мощность до 120 мВт, CW / модуляция до 12 ГГц
• Перестраиваемые лазеры для когерентных и квантовых коммуникаций
 (перестройка по С/L-диапазону, мощность до 100 мВт, полоса 100 кГц)

Лазерные диоды для биомедицины и систем мониторинга
• Лазерные диоды для систем мониторинга (DTS, DAS и др)
 \(\lambda = 1064/1310/1550/1650/15 \) нм, перестройка по длине волны, полоса до 5 кГц
• Лазерные диоды для спектроскопии
 \(\lambda = 530 – 600 \) нм, мощность до 50 мВт, импульсы до 50 пс
• Лазерные диоды для работы при высоких температурах
 \(\lambda = 1240 – 1310 \) нм, рабочая температура 100 – 200°

Лазерные диоды для индустриальных применений
• Задающие лазерные диоды для волоконных лазеров и лидаров
 \(\lambda = 1 / 1,5 / 1,9 \) мкм, импульсная мощность до 1,5 Вт, импульсы до 15 пс
• Лазерные диоды для визуализации и машинного зрения
 \(\lambda = 640 – 940 \) нм, мощность до 300 мВт, вывод излучения в пространство

Лазерные диоды для мониторинга газов и частиц
• Узкоспектральные лазерные диоды для детекции определенных веществ:
 \(\text{Sr}: 689/19, \text{O}: 760.8/19, \text{Rb}: 780.2/19, \text{HF}: 1278.1/19, \text{H}, \text{O}: 1392.0/19, \text{NH}, : 1512.2/19, \text{H}, \text{S/CO}: 1580/19, \text{CH}, : 1653.7/19, \text{HCl}: 1742.2/19, \text{CO}, : 2004/19, \text{SO}, : 2460/19, \text{CH}, \text{O}: 3560/19, \text{NOX}: 4470/5255/19 и другие)
Высокая квантовая эффективность и узкая ширина линии генерации лазерных диодов позволяют осуществлять селективную накачку в линию поглощения активного элемента с высоким КПД. Выбор боковой накачки позволяет более эффективно накачивать активный элемент.

Предимущества выбора схемы с боковой накачкой:
- Увеличенная площадь накачки
- Высокая плотность мощности
- Сокращение интервалов между диодами накачки

Данная схема содержит следующие компоненты:
- Матрицы лазерных диодов от компании Focuslight состоящая из 2-24 линеек, с мощностью до 300 Вт на линейку, доступные длины волн 808, 9хх нм
- Корпуса для матриц, корпуса-базы с возможностью водяного охлаждения от компании Ecrim, под чертеж и техническое задание заказчика.
- Зеркала и затворы с просветляющими покрытиями от компании Altechna и Crytur
- В качестве активной среды используется алюмо-иттриевый гранат (YAG, Y3Al5O12), легированный ионами неодима (Nd) от компании Crytur
Операции монтажа лазерных кристаллов в лазерные линейки и решетки – сложные и дорогостоящие процессы, которые определяют выходные параметры готовых приборов. Для получения лазерных диодных модулей с высокими оптическими характеристиками и высокой надежностью возникает необходимость в проведении ускоренных испытаний на долговечность. Представлены результаты испытаний лазерных модулей из различных кристаллов. Показано, что при оптимальном монтаже удается создавать модули со стабилизированной длиной волны. Достигнуть значения показателя наработки на отказ 177710 часов с доверительным интервалом 60%.

1. Введение
Благодаря хорошему качеству луча и гибкости использования в работе, мощные диодные лазеры с оптоволоконной связью нашли широкое применение в промышленности, в военной и медицинских областях, технологии печати и в сфере обработки материалов [1]. Ввиду растущего в последние годы объема исследований эффективность работы мощных диодных лазеров резко повысилась. В настоящее время лазеры в виде линейки или решетки диодов могут вырабатывать вать излучение до сотни ватт выходной мощностью. В некоторых отдельных прикладных приложениях существует необходимость использовать лазеры, непрерывно работающие на протяжении нескольких лет или даже десятилетий. То есть существует потребность в использовании диодных лазеров с высокой выходной мощностью, но при этом возникает необходимость поддержки в охлаждение таких диодных лазеров для обе спечения высокой надежности их работы.

Исследования способов крепления кристаллов на подложке стали необходимыми при создании приборов с высокими характеристиками. Для поиска оптимального крепления были исследованы разные кристаллы, полученные от разных мир вых поставщиков. С помощью подбора оптимальной схемы охлаждения, усовершенствования конструкции и технологии корпуса оптической системы была достигнута более высокая надежность работы лазерных модулей с несколькими одноименными излучателями. Степень надежности была подтверждена результатами ускоренных испытаний на долговечность. Это позволяет создавать диодные лазерные модули с длительным сроком службы, не требующие частого технического обслуживания и обладающие высокой степенью надежности.

2. Теоретическая модель
Предполагается, что механизм отказа является одинаковым для всех видов кристаллов, можно провести ускоренные испытания на долговечность с помощью ускорения наработки на отказ изделий, воздействуя на них повышенными рабочими нагрузками или увеличивая параметры воздействия внешней среды. На основании определенных выводов из результатов испытаний на долговечность можно получить коэффициенты ускорения и параметры, касающиеся срока службы.

Высокая температура является одним из наиболее распространенных видов нагрузок, которые используются в испытаниях на долговечность. В соответствии со стандартом Telcordia GR468CORE [2] модель Аррениуса описывает влияние температуры на срок службы изделий. Связь между ними выражается в уравнении:

\[L = \beta \exp \left(\frac{E_a}{kT} \right) \]

где \(L \) - параметр, отображающий срок службы, например, средний срок службы, медианный срок службы и т.п.; \(\beta \) - положительная константа, которая относится к характеристикам и геометрическим формам изделия; \(E \) - энергия активации ции, измеряемая в электронвольтах; \(k \) - постоянная Больцмана \((8,617 \cdot 10^{-5} \text{ eV/K})\); \(T \) - абсолютная температура в градусах Кельвина; модель Аррениуса показывает, что параметр, описывающий срок службы, экспоненциально снижается при повышении температуры.

На основании уравнения связи Аррениуса можно определить коэффициент ускорения \(t_e \) между сроком службы при температуре \(T_2 \) и сроком службы при температуре \(T_1 \):

\[t_e = \frac{L_2}{L_1} - \exp \left(\frac{E(1/T_2 - 1/T_1)}{k} \right) \]

где \(T_1 \) и \(T_2 \) – соответственно температура нормальной работы и температура ускоренного испытания на долговечность; \(L_1 \) и \(L_2 \) – соответственно срок службы при нормальной работе и срок службы в условиях проведения ускоренных испытаний на долговечность. Значение коэффициента энергии активации \(E_a \) обычно предоставляется поставщиком кристалла или это значение берется из результатов ускоренных испытаний на долговечность как минимум для трех различных температур. Исходя из этого, показатель \(E_a \) находится в пределах диапазона 0,41–0,64 eV; в данном случае значение \(E_a \) составляет 0,45 eV.

При \(T_2 > T_1 \) температурная нагрузка влияет на надежность работы. Для комнатной температуры 298K и температуры ускоренных испытаний на долговечность 308 K уравнение (2) дает коэффициент ускорения \(t_e = 1.8 \). Другими словами, при каждом повышении температуры на 10К период испытания сокращается почти вдвое.
Электрические нагрузки, такие как ток возбуждения и электрическая мощность, могут также применяться в ускоренном испытании на долговечность. Коэффициент ускорения \(t/T \) между сроком службы при мощности \(P_2 \) и сроком службы при мощности \(P_1 \) следующий:

\[\tau_p = \left(\frac{P_2}{P_1} \right)^n \]

где \(P_1 \) и \(P_2 \) – соответственно номинальная мощность диодного лазера и чрезмерно используемая мощность в ускоренном испытании; \(n \) – положительная константа, которая относится к энергии активации. Согласно данным, предоставленным поставщиком кристалла [3], \(n = 5,0 \).

При повышении мощности на 10% коэффициент ускорения составляет \(t/T = 1,6 \), а время испытания сокращается примерно на 40%. С помощью испытания, в котором используется повышенная температура и повышенный показатель тока возбуждения, можно выполнить оценку параметра долгосрочной надежности диодного лазера в ограниченном промежутке времени, повышая его продуктивность существенным образом.

3. Меры по повышению надежности работы

Среди многих важных факторов, влияющих на показатель долгосрочной надежности диодного лазерного модуля, в настоящем исследовании основное внимание было обращено на два фактора: надежность крепления кристаллов и надежность работы лазерных модулей.

3.1. Надежность крепления кристаллов

Для того, чтобы повысить выходную мощность и срок службы диодного лазера, важно обеспечить условия для эффективного рассеивания вырабатываемого тепла с целью снижения тепловой нагрузки, испытываемой кристаллом во время работы лазера. Таким образом, уровень снижения теплового сопротивления на границах кристалла и на контактном электрическом сопротивлении является очень критичным параметром. Особенно важно наличие хорошего контакта между кристаллом и подложкой. Наличие слабого контакта или появление пузьрьков воздуха между кристаллом и подложкой, образовавшихся в процессе прикрепления кристалла к подложке, приводит к неисправностям в работе лазера. Таким образом, надежность крепления кристалла оказывает решающее влияние на диодный лазер.

В настоящем исследовании рассмотрены преимущества и недостатки мягкого припоя и твердого припоя. Параметры подложки и параметры крепления оптимизируются соответственно в отношении кристаллов с различными длинами волн и различной выходной мощностью, которые были получены от разных поставщиков. Поскольку в лазерах 8x8 стандартно используются подложки из Cu, для прикрепления кристалла в лазере 8x8 используется отличный припой с использованием индия, то это снижает нагрузку, провоцирующую несоответствие между коэффициентами теплового расширения полюжи и кристалла. При соответствующем выборе материала для подложки применяется твердый припой с использованием сплава из золота и олова (AuSn) с целью крепления кристаллов в мощных лазерах 9x9, при этом его преимущества представлены высокой прочностью сварки и хорошей усталостной стойкостью. Созданы специализированные компоненты для припоя при оптимизации структур подложки и дальнейшей регулировки параметров процесса. Были изучены крепления кристаллов в лазерах с длиной волны от 600 нм до 1550 нм.

Существует четыре основных способа для проверки качества крепления кристаллов на подложке. Первый способ – визуальный осмотр. При этом место соединения припое проверяется под микроскопом с высокой степенью увеличения для определения состояния припоя (например, является ли припой окисленным). Во-вторых, для проверки быстроты пайки между кристаллом и подложкой могут использоваться инструменты испытаний на сдвиговые напряжения. В-третьих, можно сканировать кристалл на подложке с помощью ультразвуковой установки. При этом для обнаружения износа или наличия пузьрьков воздуха про-

Рис. 1. Крепление КНП, осуществленное разными типами соединения: а – изменения выходной мощности; б – изменения порогового тока за время приработки
веряется припой. Наконец, мы можем провести испытание оптических и электрических характеристик КНП. Если КНП не спаян надлежащим образом, повышенный уровень теплового сопротивления приведет к сбою работы устройства во время испытаний на отказ или исследований.

Способ оптимизации процесса крепления индием

В испытаниях участвовали 5 образцов КНП с неоптимизированным процессом установки и 5 образцов КНП с оптимизированным процессом установки. Образцы подвергались воздействию высокой температуры 80°C. Окисление припоя индием в КНП наблюдалось через одну неделю после хранения образцов под воздействием высокой температуры. Припой на образцах с неоптимизированным процессом установки затвердел, при этом выделились частицы, указывающие на возможное нарушение процесса сплавления. А припой на образцах с оптимизированным процессом установки все еще оставался мягким, и признаки сплавления отсутствовали. Можно считать, что степень надежности КНП улучшается благодаря оптимизации крепления.

Способ оптимизации процесса соединения AuSn

В припое AuSn используется четыре разных процесса соединения (обозначенные A–D, рис. 1). В отношении диодных лазеров, в которых используется крепление разных типов, были проведены измерения с помощью испытания максимального обратного напряжения и испытания на принудительный отказ в течение 96 часов. Во время испытания на принудительный отказ каждые 24 часа измерялись показатели выходной мощности и порогового тока. На рис. 1 приведены результаты испытаний.

Рассматривая значения выходной мощности, коэффициента изменения выходной мощности, порогового тока и коэффициента изменения порогового тока, мы обнаружили, что в соединении типа A достигнуты следующие параметры: самый высокий показатель выходной мощности КНП, самый низкий показатель порогового тока, минимальный коэффициент изменения. Путем оптимизации процесса соединения мы можем добиться улучшения рассеивания тепла КНП, чтобы достичь более высокой эффективности работы. Показатели оставались стабильными даже через 96 часов испытания на принудительный отказ.

Способ рассеивания тепла КНП для изделий с высокой тепловой нагрузкой

Стандартные диодные лазеры обладают электрической оптической эффективностью 40–50%; недостатки непрерывно излучающих диодных лазеров на длинах волн 1 470 нм или 1 550 нм обычно связаны с низкой электрооптической эффективностью и высокой тепловой нагрузкой, их электрооптическая эффективность составляет всего лишь около 20–30%. Мы считаем, что способ крепления кристаллов в длинноволновом диодном излучателе – это интересный объект для исследования и может использоваться для целого ряда изделий компании. Модель процесса рассеивания тепла в кристалле (λ = 1 470 нм, кристалл прикреплен на подложке) построена с помощью метода конечно-разностных элементов в системе ANSYS [4]. Результаты моделирования процесса рассеивания тепла и стандартных испытаний показаны на рис. 2.

Кристалл, излучающий на λ = 915 нм с выходной мощностью 12 Вт производит мощность теплового потока 6 Вт/мм². Кристалл, излучающий на λ = 1 470 нм с площадью 2,5 мм², имеющих входную мощность 66,5 Вт и выходную мощность 6,0 Вт производит тепловую мощность 20,6 Вт, а также обладает электрооптической эффективностью всего лишь 23%. Такой кристалл лазера на λ = 1 470 нм производит мощность теплового потока до 13,7 Вт/мм², что почти в два раза больше по сравнению с кристаллом, излучающим на λ = 915 нм. Поэтому соединение кристаллов в длинноволновых диодных лазерах оказывается более сложным процессом, чем соединение кристаллов в лазерах, излучающих на λ = 915 нм. Этот факт послужил причиной того, что в данном исследовании изучались именно диодные лазеры, излучающие на λ = 1 470 нм.

Анализ результатов моделирования позволил обнаружить, что тепло, выработанное кристаллом, может быстро
рассеяться через припой и подложку. Максимальный рост температуры в кристалле составляет 64°С (до 2,5 подложки кристалла), а самая высокая температура на лицевой стороне кристалла составляет 89°С. Этот оптимизованный процесс крепления эффективно предотвращает отказ работы кристалла.

Более того, как мы можем увидеть из данных измерений максимального обратного напряжения, выходная мощность почти линейно растет с ростом инжекционного тока без заметной кривизны или теплового загиба. Это еще раз подтверждает, что этот процесс крепления является эффективным для создания диодных лазеров с высоким уровнем надежности.

Испытания на долговечность

Кристаллы различных поставщиков, изготовленные из разного материала, прошли ускоренные испытания на долговечность для подтверждения долговременности надежности соединения индия и соединения AuSn. Измеренные значения показателей средней наработки на отказ КНП представлены в табл. 1.

КНП 9хм изготовленные из 5 пластин от двух поставщиков, прошли ускоренные испытания на долговечность под воздействием высокой температуры. Согласно теории ускоренного старения и теории статистики вероятности при условии доверительного интервала CL = 60% и рабочей температуре 25°С можно получить показатель средней наработки до отказа. Он составит 203 896 часов, то есть около 23 лет. Эти результаты испытаний показывают, что соединение между этими кристаллами и подложками было выполнено с высоким качеством. Таким образом, эти КНП могут давать высокий уровень выходной мощности, высокую эффективность, длительный срок службы и хорошию долговременную стабильность работы.

3.2. Надежность работы лазерных модулей с несколькими одиночными излучателями

На основе надежных КНП диодные лазеры с несколькими одиночными излучателями могут быть помещены, а затем соединены с волокном 105 мкм для достижения высокого уровня яркости и большой мощности. Поскольку диаметр сердцевины волокна ограничен, даже незначительное смещение и деформация компонентов в соединительной оптической системе могут непосредственно повлиять на эффективность соединения, таким образом увеличивая потери и снижая выходную мощность. Следовательно, оценка стабильности работы диодных лазеров с несколькими одиночными излучателями является важной частью оценки степени их надежности.

Изменение рабочей температуры приводит к возникновению смещений и деформаций оптических компонентов и оптического пути, а это влияет на выходную мощность лазера. Стабильность оптических элементов, а также качество соединения могут быть оценены с помощью измерения выходной мощности в зависимости от температуры, изменяющейся в диапазоне от −5°С до 70°С. Было проведено сравнение по выходной мощности и спектру диодного лазера, состоящего из нескольких одиночных излучателей (компания BWT Beijing Ltd.) и двух диодных лазеров с мощностью такого же уровня и дизайна двух других компаний (компания № 01, компания № 02). На рис.3 изображены измеренные показатели выходной мощности и оптического спектра. На рис.4 дано сравнение коэффициентов изменений мощности изделий, произведенных тремя компаниями. Из рис.3 можно увидеть, что изменение выходной мощности диодного лазера с несколькими одиночными излучателями компании BWT меньше по сравнению с этим же показателем, но для лазеров, произведенных двумя другими компаниями. Выходная мощность лазеров всех

<table>
<thead>
<tr>
<th>Группа</th>
<th>Описание</th>
<th>Размер образца</th>
<th>Отказ</th>
<th>Мин. время испытания (ч)</th>
<th>Макс. время испытания (ч)</th>
<th>Устройство испытания</th>
<th>Устройство общего ускорения</th>
<th>Ток испытания</th>
<th>Температура испытания (°С)</th>
<th>Наработка на отказ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>830 нм 1,2 Вт</td>
<td>32</td>
<td>0</td>
<td>2064</td>
<td>2064</td>
<td>66048</td>
<td>189610</td>
<td>1,4</td>
<td>50</td>
<td>206931</td>
</tr>
<tr>
<td>2</td>
<td>808 нм 10,0 Вт</td>
<td>30</td>
<td>0</td>
<td>1500</td>
<td>1500</td>
<td>45000</td>
<td>135496</td>
<td>10,7</td>
<td>45</td>
<td>147875</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Группа</th>
<th>Поставщик №</th>
<th>Длина волны 12 Вт</th>
<th>Пластина №</th>
<th>Размер образца</th>
<th>Отказ</th>
<th>Мин. время испытания (ч)</th>
<th>Макс. время испытания (ч)</th>
<th>Устройство испытания</th>
<th>Устройство общего ускорения</th>
<th>Ток испытания</th>
<th>Температура испытания</th>
<th>Наработка на отказ</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>О1</td>
<td>915 нм</td>
<td>1</td>
<td>18</td>
<td>1</td>
<td>818</td>
<td>2006</td>
<td>35290</td>
<td>81706</td>
<td>12,5</td>
<td>40</td>
<td>40402</td>
</tr>
<tr>
<td>4</td>
<td>О1</td>
<td>915 нм</td>
<td>2</td>
<td>18</td>
<td>1</td>
<td>1852</td>
<td>3656</td>
<td>64156</td>
<td>144339</td>
<td>12,5</td>
<td>40</td>
<td>73450</td>
</tr>
<tr>
<td>5</td>
<td>О1</td>
<td>915 нм</td>
<td>3</td>
<td>18</td>
<td>0</td>
<td>3656</td>
<td>3656</td>
<td>65808</td>
<td>152364</td>
<td>12,5</td>
<td>40</td>
<td>166283</td>
</tr>
<tr>
<td>6</td>
<td>О2</td>
<td>675 нм</td>
<td>1</td>
<td>24</td>
<td>0</td>
<td>1992</td>
<td>1992</td>
<td>47808</td>
<td>110680</td>
<td>13,0</td>
<td>40</td>
<td>120801</td>
</tr>
<tr>
<td>7</td>
<td>О2</td>
<td>940 нм</td>
<td>2</td>
<td>24</td>
<td>0</td>
<td>1992</td>
<td>1992</td>
<td>47808</td>
<td>143878</td>
<td>13,0</td>
<td>45</td>
<td>157022</td>
</tr>
<tr>
<td>Всего</td>
<td></td>
<td>203895</td>
<td></td>
</tr>
</tbody>
</table>

Таблица 1. (а) Результаты испытаний долговечности соединения КНП с помощью индия.
трех компаний снижается по мере повышения температуры, при этом показатели лазера компании № 01 имеют самый низкий уровень. Лазер компании № 02 сопоставим с лазером компании BWT (он незначительно хуже, чем лазер компании BWT). Сравнение трех лазеров показывает, что оптические компоненты и проп цессы, используемые в лазерах компании BWT, имеют высокую стабильность и прогнозируемую высокую надежность работы.

Смещение длины волны лазера компании BWT из-за изменения температуры составляет \(\Delta \lambda / \Delta T = 0,31 \text{ нм}/\text{°C} \). Для лазеров компании № 01 и 02 это значение составляет 0,34 нм/°C и 0,37 нм/°C соответственно. Смещение длины волны лазера компании BWT меньше, чем у лазеров, произведённых другими двумя компаниями. Это также указывает на то, что в диодном лазере, изготовленным компанией BWT, достигается низкий показатель теплового сопротивления вследствие хорошего термального контроля, хорошего крепления, а также стабильного оптического дизайна и технологии.

4. Результаты испытаний долговременной стабильности

4.1. Долговременные испытания на долговечность

В зависимости от длины волны, типа корпуса и выходной мощности лазеров мы поделили лазерные модули с волоконными выводами на разные категории. В отличие от лазеров с одним одиночным излучателем, лазерные модули с несколькими одиночными излучателями состоят из лазеров, у которых на один модуль приходится от 2 до 7 излучателей.

В соответствии с вышеописанной процедурой ускоренных испытаний на долговечность повышенная температура применяется в качестве нагрузки для ускорения испыта-

Рис.3. Изменения мощности и спектра излучения при различных рабочих температурах
излучателями и волоконными выводами, в которых используется крепление КНП AuSn

Таблица 2(b). Условия проведения ускоренного испытания на долговечность лазерных модулей с несколькими одиночными волоконными выводами, в которых используется крепление КНП индием

Таблица 2(а). Условия проведения ускоренного испытания на долговечность лазерных модулей с одиночным излучателем и волоконными выводами, в которых используется крепление КНП индием

<table>
<thead>
<tr>
<th>Группа испытаний</th>
<th>Описание</th>
<th>Количество образцов</th>
<th>Время ускоренного испытания долговечности (ч)</th>
<th>Условия испытания долговечности</th>
<th>Результаты</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>830-1,0 Вт</td>
<td>18</td>
<td>2000</td>
<td>1,4 А, 40°С</td>
<td>Рис. 5а</td>
</tr>
<tr>
<td>2</td>
<td>808-4,0 Вт</td>
<td>12</td>
<td>2000</td>
<td>5,0 А, 40°С</td>
<td>Рис. 5б</td>
</tr>
</tbody>
</table>

Рис. 4. Коэффициент изменения мощности в зависимости от рабочей температуры, полученный с использованием лазеров трех компаний с одинаковой мощностью и конструкцией

Испытание 1 и Испытание 2 (рис.5) являются ускоренными испытаниями на долговечность лазерных модулей с одиночным излучателем и диодными лазерами двух разных производителей. В приборах используется крепление кристаллов индием с целью оценки срока службы лазерных модулей с волоконными выводами и индиевым креплением. В табл. 2 (а) подробно указаны результаты.

Испытание 3 – Испытание 5 являются ускоренными испытаниями на долговечность лазерных модулей с диодными лазерами, состоящими из нескольких одиночных излучателей, в которых используется крепление кристаллов с помощью AuSn на трех разных пластинах (рис.6). Приборы получены от одного и того же поставщика.

Цель испытаний – оценка срока службы лазерных модулей с волоконными выводами и креплением AuSn. Результаты этих испытаний приведены в табл. 2 (б). В отношении испытания 5 были использованы две стадии: первая стадия испытания проводилась на устройствах при 10 А (порядка 25 Вт) на протяжении 1 000 часов, а вторая стадия испытания проводилась при 12 А (порядка 30 Вт) на протяжении остальных часов.

Испытание 3 – Испытание 5, Испытание 6 и Испытание 7 (рис.7) являются ускоренными испытаниями на долговечность лазерных модулей с несколькими одиночными излучателями с диодными лазерами, в которых используется крепление кристаллов с помощью AuSn, полученных от трех различных поставщиков, с целью оценки срока службы лазерных модулей с волоконными выводами и креплением КНП индием.

Таблица 2(b). Условия проведения ускоренного испытания на долговечность лазерных модулей с несколькими одиночными излучателями и волоконными выводами, в которых используется крепление КНП AuSn

<table>
<thead>
<tr>
<th>Группа испытаний</th>
<th>Поставщик №</th>
<th>Описание</th>
<th>Кол-во излучателей в одном модуле</th>
<th>Количество образцов</th>
<th>Время ускоренного испытания долговечности (ч)</th>
<th>Условия испытания долговечности</th>
<th>Результаты</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A, пластина-01</td>
<td>20 Вт</td>
<td>11</td>
<td>2000</td>
<td>11,4 А, 45°С</td>
<td>Рис. 6а</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>A, пластина-02</td>
<td>25 Вт</td>
<td>11</td>
<td>1000</td>
<td>10,7 А, 45°С</td>
<td>Рис. 6б</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A, пластина-03</td>
<td>30 Вт</td>
<td>12</td>
<td>2000</td>
<td>12,0 А, 35°С</td>
<td>Рис. 6c</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Б</td>
<td>25 Вт</td>
<td>9</td>
<td>6000</td>
<td>10,0 А, 35°С</td>
<td>Рис. 6d</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>С</td>
<td>45 Вт -60 Вт</td>
<td>6-7</td>
<td>2000</td>
<td>12,5 А, 45°С</td>
<td>Рис. 7а</td>
<td></td>
</tr>
</tbody>
</table>

Таблица 2(с). Условия проведения ускоренного испытания на долговечность лазерных модулей с одиночным излучателем и волоконными выводами, в которых используется крепление КНП AuSn

<table>
<thead>
<tr>
<th>Группа испытаний</th>
<th>Поставщик №</th>
<th>Описание</th>
<th>Количество образцов</th>
<th>Время ускоренного испытания долговечности (ч)</th>
<th>Условия испытания долговечности</th>
<th>Результаты</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>С</td>
<td>915-10,0 Вт</td>
<td>16</td>
<td>2000</td>
<td>11,3 А, 40°С</td>
<td>Рис. 7д</td>
</tr>
<tr>
<td>9</td>
<td>С</td>
<td>976-9,0 Вт -wavelock</td>
<td>11</td>
<td>3000</td>
<td>12,0 А, 45°С</td>
<td>Рис. 8</td>
</tr>
</tbody>
</table>
плением AuSn. Детальные данные этих испытаний можно увидеть в таблице 2 (б). Модули, используемые в Испытании 7, довольно отличаются от модулей, изготовленных для Испытания 3 – Испытания 6. Модули для Испытания 7 были изготовлены из 6 или 7 одиночных излучателей в одном лазерном модуле. Ещё можно использовать для оценки степени надёжности лазерных модулей с несколькими одиночными излучателями сверхвысокой яркости.

Испытание 8 (рис. 7) представляет собой ускоренное испытание на долговечность лазерных модулей с одиночным излучателем с диодными лазерами, в которых используется крепление кристаллов с помощью AuSn, полученных от других поставщиков, с целью оценки срока службы лазерных модулей с волоконными выводами и креплением AuSn.

Образцы, используемые в Испытании 9 (рис. 8), представляют собой лазерные модули с волоконными выводами и стабилизированной длиной волны, разработанные с целью достижения полосы поглощения 976 нм в сфере применения волоконных лазеров. Этот эксперимент проводился с целью оценки стабильности спектра оптического элемента с контролируемой длиной волны, используемого в этом модуле, а также производственного процесса для изготовления этого вида лазера. Детальная информация об этих испытаниях дана в таблице 2 (с).

4.2. Анализ испытаний на долговечность

Из результатов девяти ускоренных испытаний на долговечность можно видеть, что у большинства образцов сохраняется стабильный показатель мощности при испытаниях. Однако временами проявляется случайный отказ работы, но это не отказ вследствие износа. При критерии отказа \(\Delta P \leq \pm 20\% \) только один образец излучателя показал свой рабочий ресурс среднего количества 111 штук испытуемых модулей с волоконными выводами (всего 242 излучателя). Среди них использовались лазерные модули с несколькими одиночными излучателями высокой степени яркости в количестве 54 шт. Таким образом, вероятность безотказной работы готовых изделий после проведения ускоренного испытания на долговечность выше 98%. Согласно модели Аррениуса может быть рассчитана средняя наработка до отказа при температуре 25°С; рассчитанные параметры показаны в табл. 3.

Результаты ускоренных испытаний на долговечность показывают, что и лазерные модули с одним одиночным
излучателем, и лазерные модули с несколькими одиночными излучателями обладают высокой надежностью. При использовании метода максимального правдоподобия [5] средняя наработка на отказ составляла около 177 тыс. ч. (20 лет) при температуре 25°С.

Нашим клиентам из промышленных и медицинских сфер применения лазеров требуют, чтобы средняя наработка на отказ при 25°С составляла более 100 тыс. ч. Таким образом, все ускоренные испытания на долговечность были проведены только для того, чтобы выполнить или даже превзойти требования наших покупателей. В определенный момент, когда эти результаты были достигнуты, проведение экспериментов было остановлено. Хотя продолжение экспериментов помогло бы установить, что продолжительность средней наработки на отказ может быть намного выше.

Когда клиенты используют оборудование в различных рабочих условиях, фактический срок службы может отличаться от того, что указано в документах. В практических условиях эксплуатации все лазерные модули с несколькими одиночными излучателями компании BWT, которые мы доставили покупателям несколько лет назад (в целом около 100 000 единиц лазерных модулей с несколькими одиночными излучателями компании BWT), в настоящее время все еще находятся в эксплуатации с общей наработкой около 1 000 000 000 часов на устройство. Можно сделать вывод о том, что наша конструкция, техника и технология эффективны для повышения рабочих характеристик, качества и надежности этого вида диодных лазеров с несколькими одиночными излучателями.

5. Выводы

В настоящей работе использованы различные кристаллы, полученные от разных поставщиков, монтаж которых осуществлялся на подложках разного типа. Были оптимизированы технология и условия крепления. На основании оптимизированного процесса крепления все типы КНП установлены в модули с несколькими одиночными излучателями для того, чтобы получить высокий уровень яркости и мощности с оптимального выхода. Изменение мощности и смещение длины волн излучения были зарегистрированы при воздействии различных рабочих температур. Изменение мощности и длина волны в лазерных модулях также было зарегистрировано в ходе проведения ускоренных испытаний на долговечность. Результаты испытаний показывают, что компания BWT обладает способностью создавать диодные сборки и модули из различных кристаллов, выращенных разными производителями. Результаты подтвердили, что процесс крепления кристаллов и их установки, выработанные в компании BWT, способствуют созданию модулей с оптическим излучением высокой яркости, при этом существует возможность контроля стабильности длины волны. В данном исследовании общая продолжительность наработки на отказ в отношении исследуемых диодных лазеров достигла 177 тыс. ч (половинка 20 лет). В реальных условиях эксплуатации, а также согласно данным обратной связи с покупателями, можно отметить, что наши модули с несколькими одиночными излучателями вновь показали высокий уровень надежности и эффективности, который превышает ожидания клиентов. Исследования, описанные в настоящей работе, могут служить руководством по получению диодных лазеров с более высокой эффективностью и надежностью работы в отношении соответствующих сфер применения в будущем.
Литература

Таблица 3. Средняя наработка до отказа лазерных модулей

<table>
<thead>
<tr>
<th>Группа испытаний</th>
<th>Описание</th>
<th>Средняя наработка до отказа при CL50% (ч.)</th>
<th>Тип крепления</th>
<th>Общая наработка до отказа при CL60% (ч.)</th>
<th>B05 при CL60% (ч.)</th>
<th>B10 при CL60% (ч.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>830-1,0 Вт</td>
<td>90 965</td>
<td>Индиюс</td>
<td>151608</td>
<td>7777</td>
<td>15079</td>
</tr>
<tr>
<td>2</td>
<td>808-4,0 Вт</td>
<td>60 643</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9xx-20 Вт</td>
<td>72 258</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9xx-25 Вт</td>
<td>36 129</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>9xx-30 Вт</td>
<td>34 219</td>
<td>AuSn</td>
<td>177710</td>
<td>9116</td>
<td>18730</td>
</tr>
<tr>
<td>6</td>
<td>9xx-25 Вт</td>
<td>80 360</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>9xx-45 Вт ~ 60 Вт</td>
<td>72 258</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>915-10,0 Вт</td>
<td>80857²</td>
<td>AuSn</td>
<td>80857²</td>
<td>4147</td>
<td>8522</td>
</tr>
<tr>
<td>9</td>
<td>976-9,0 Вт</td>
<td>108 386</td>
<td>Стабилизированная длина волны</td>
<td>108386</td>
<td>5560</td>
<td>11424</td>
</tr>
</tbody>
</table>

* Это ускоренное испытание на долговечность, Испытание 8, все еще продолжается. Общее количество часов является неполным по состоянию на данный момент.
Когерентная передача данных

Технология когерентной передачи позволяет значительно увеличить объем передаваемых по оптоволокну данных (600 Гбит/с и выше). Характеризуется технология следующими особенностями:

- Фазовая и амплитудная модуляция высокого порядка
- Поляризационное мультиплексирование
- Когерентное детектирование

Компонентная база для когерентной передачи данных отличается повышенной технологичностью.

Ниже представлены решения от лидера отрасли, компании NeoPhotonics (США), которая реализует компоненты в виде гибридных фотонных интегральных схем (технологии Advanced Hybrid Photonic Integration).

Модули когерентных трансиверов ClearLight™

- Быстросъемные трансиверы формата CFP-DCO и CFP2 LR4
- Скорость передачи до 100 G / 200 G на одной длине волны
- Встроенный высокомощный лазер и компоненты с низкими потерями позволяют работать без усилителей

Компоненты для когерентной передачи данных

Перестраиваемый лазерный источник uITLA

- Интегральная сборка на базе лазера с внешним резонатором (ECL)
- Диапазон перестройки: C и L диапазон
- Мощность до 16 дБм
- Ширина линии менее 100 кГц
- Компактная сборка: 20x37x7.5 мм

Когерентный микромодулятор

- 4 структуры Маха-Цендера на одном InP чипе
- Диапазон >40 ГГц
- Встроенный 64 Гбадр драйвер
- Компактная сборка: 5x25x12 мм

Когерентный приемник ICR

- Прием сигналов в С-диапазоне до 64 Гбадр
- Работа с сигналами DP-DQPSK и 16-QAM
- Работа с внешним лазерным источником
- Встроенный аттенюатор и фотодиод для мониторинга
- Компактная сборка: 19x12x5 мм

Сопутствующие компоненты

Атермальные AWG мультиплексоры/демультиплексоры

- Расстояние между каналами 50 ГГц / 100 ГГц
- 40 – 96 каналов

In-line фотодиод для мониторинга мощности

- Вносимые потери менее 0.01 дБ

Перестраиваемый MEMS аттенюатор

- Диапазон аттенюации до 45 дБ
СУПЕРЛЮМИНЕСЦЕНТНЫЕ ДИОДЫ

Суперлюминесцентные диоды, являясь гибридом между светодиодами и лазерными диодами, генерируют широкополосное излучение значительной мощности, которое может быть эффективно введено в оптоволокно. Суперлюминесцентные диоды находят применение в следующих применениях:

- Оптическая когерентная томография (биомедицина, индустриальное применение)
- Волоконно-оптическая сенсорика и системы мониторинга
- Волоконно-оптические гироскопы
- Машинное зрение

<table>
<thead>
<tr>
<th>Центральная длина волны</th>
<th>Макс. мощность</th>
<th>Макс. полоса</th>
</tr>
</thead>
<tbody>
<tr>
<td>405 – 450 нм</td>
<td>10 мВт (@5 нм)</td>
<td>6 нм (@5 мВт)</td>
</tr>
<tr>
<td>635 – 650 нм</td>
<td>10 мВт (@6 нм)</td>
<td>10 нм (@4 мВт)</td>
</tr>
<tr>
<td>750 – 790 нм</td>
<td>15 мВт (@20 нм)</td>
<td>40 нм (@5 мВт)</td>
</tr>
<tr>
<td>800 – 880 нм</td>
<td>45 мВт (@32 нм)</td>
<td>65 нм (@5 мВт)</td>
</tr>
<tr>
<td>900 – 980 нм</td>
<td>35 мВт (@15 нм)</td>
<td>90 нм (@5 мВт)</td>
</tr>
<tr>
<td>1020 – 1190 нм</td>
<td>350 мВт (@20 нм)</td>
<td>120 нм (@15 мВт)</td>
</tr>
<tr>
<td>1230 – 1350 нм</td>
<td>50 мВт (@38 нм)</td>
<td>110 нм (@3 мВт)</td>
</tr>
<tr>
<td>1380 – 1490 нм</td>
<td>18 мВт (@65 нм)</td>
<td>80 нм (@5 мВт)</td>
</tr>
<tr>
<td>1520 – 1580 нм</td>
<td>35 мВт (@40 нм)</td>
<td>160 нм (@5 мВт)</td>
</tr>
<tr>
<td>1600 – 1690 нм</td>
<td>10 мВт (@50 нм)</td>
<td>85 нм (@2 мВт)</td>
</tr>
</tbody>
</table>

Варианты исполнения: 14-pin «бабочка», 8-pin «бабочка», 14-pin DIL, TOSA, TO-can

Опции: охлаждение, плоский спектр, фотодиод

Схема ниже иллюстрирует пример использования суперлюминесцентных диодов в оптической когерентной томографии:
Драйверы, лазерная электроника

Драйверы для импульсных лазерных систем
Драйверы для непрерывных лазерных диодов типа 10-pin / 14-pin "бабочка"

Драйверы для непрерывных диодов накачки

Для подбора драйвера необходимы следующие данные:

Базовая информация о лазере
- Тип лазера и его производитель
- Длина волны
- Оптическая мощность
- Применение

Режим работы
- CW/импульсный/модуляция
- Время нарастания и спада
- Длительность импульса
- Скважность
- Частота

Охлаждение
- Охлаждение драйвера: воздух/вода
- Охлаждение лазера: воздух/вода/Пельтье
- Мощность элемента Пельтье
- Ток элемента Пельтье
- Напряжение элемента Пельтье

Электрические характеристики лазера
- Рабочий ток
- Пороговый ток
- Рабочее напряжение
- Дистанция «драйвер» - «лазер»

Дополнительные параметры
- Точность установки тока
- Стабильность тока
- Стабильность температуры

Характеристики драйвера
- Исполнение: OEM / лабораторное
- Тип управления

ТИПОВЫЕ РЕШЕНИЯ

Драйверы для непрерывных диодов накачки

<table>
<thead>
<tr>
<th>Напряжение диода</th>
<th>1-10 В</th>
<th>5-40 В</th>
<th>1-10 В</th>
<th>1-10 В</th>
<th>5-40 В</th>
<th>1-10 В</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ток накачки</td>
<td>0-15 A</td>
<td>0-10 A</td>
<td>0-30 A</td>
<td>0-100 A</td>
<td>0-25 A</td>
<td>0-200 A</td>
</tr>
<tr>
<td>Управление</td>
<td>Аналоговое/ RS-232/ UART</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Габариты</td>
<td>375830 мм</td>
<td>615830 мм</td>
<td>116,86130 мм</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Драйверы для непрерывных лазерных диодов типа 10-pin / 14-pin «бабочка»

<table>
<thead>
<tr>
<th>Ток накачки</th>
<th>0 - 250 мА</th>
<th>0 - 750 мА</th>
<th>0 - 1500 мА</th>
</tr>
</thead>
<tbody>
<tr>
<td>Шумы выходного тока</td>
<td>10-15 мкА</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Контроль температуры</td>
<td>от +17 до +40 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Исполнение</td>
<td>OEM (1026130 мм) / Benchtop</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Драйверы для импульсных лазерных систем

<table>
<thead>
<tr>
<th>Напряжение диода</th>
<th>0-140 В</th>
<th>0-300 В</th>
<th>0-300 В</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ток накачки</td>
<td>1-150 A</td>
<td>1-300 A</td>
<td>1-350 A</td>
</tr>
<tr>
<td>Длительность импульсов</td>
<td>50 – 1000 мкс</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Средняя мощность</td>
<td>0,4 кВт</td>
<td>1,5 кВт</td>
<td>4,6 кВт</td>
</tr>
</tbody>
</table>

www.lenlasers.ru

ФОТОДИОДЫ

КРЕМИЕВЫЕ ФОТОДИОДЫ И ФOTOУМНОЖИТЕЛИ

Кремниевые фотодиоды используются для детекции излучения в диапазоне 400 - 1100 нм и находят свое применение во множестве областей.

Одним из лидеров по производству кремниевых фотодиодов является компания Excelitas Technologies, которая предлагает следующие решения:

Кремниевые лавинные фотоприёмники (Si APD)
Предназначены для эффективной детекции слабых сигналов, могут работать как в основном режиме (VR< VBR), так и как счётчик фотонов в режиме Гейгера (VR> VBR)

<table>
<thead>
<tr>
<th>Активный диаметр</th>
<th>Время нарастания</th>
<th>Темновой ток</th>
<th>Чувствительность</th>
</tr>
</thead>
<tbody>
<tr>
<td>мм</td>
<td>нс</td>
<td>нА</td>
<td>А/Вт@830 нм</td>
</tr>
<tr>
<td>0.5 – 10</td>
<td>0.2 – 3</td>
<td>15 – 100</td>
<td>77 – 128</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A/Вт@900 нм</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>45 – 108</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A/Вт@1060 нм</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 – 36</td>
</tr>
</tbody>
</table>

Варианты исполнения: TO-5, TO-18, оптрозетка, линзирование, фильтр, TEC

Специальные исполнения:
- Массивы фотоприемников и квадrantные фотодиоды
- НИР-оптимизированные (для работы в области 1060 нм)
- УФ-оптимизированные с большой площадью (10x10 мм)

Кремниевые и InGaAs PIN фотоприёмники

<table>
<thead>
<tr>
<th>Активный диаметр</th>
<th>Время нарастания</th>
<th>Темновой ток</th>
<th>Чувствительность</th>
</tr>
</thead>
<tbody>
<tr>
<td>мм</td>
<td>нс</td>
<td>нА</td>
<td>А/Вт@800 нм</td>
</tr>
<tr>
<td>0.1 – 1.4</td>
<td>0.5 – 20</td>
<td>0.02 – 300</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A/Вт@900 нм</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A/Вт@1550 нм</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.95</td>
</tr>
</tbody>
</table>

Варианты исполнения: TO-5, TO-8, TO-36, TO-18, фильтр, TEC

Специальные исполнения:
- Массивы фотоприемников и квадrantные фотодиоды
- УФ-оптимизированные (до 220 нм)

Гибридные кремниевые и InGaAs APD/PIN модули

<table>
<thead>
<tr>
<th>Активный диаметр</th>
<th>Полоса</th>
<th>Чувствительность</th>
</tr>
</thead>
<tbody>
<tr>
<td>мм</td>
<td>МГц</td>
<td>@900 нм</td>
</tr>
<tr>
<td>0.08 – 5.4</td>
<td>0.01 – 200</td>
<td>130 МВ/Вт</td>
</tr>
<tr>
<td></td>
<td>0.37 – 130 МВ/Вт</td>
<td>140 – 280 кВ/В</td>
</tr>
<tr>
<td></td>
<td>0.37 – 130 МВ/Вт</td>
<td>90 – 340 кВ/В</td>
</tr>
</tbody>
</table>

Встроенный низкочастотный транзисторный усилитель, двойной TEC

Счётчики одиночных фотонов и высокочувствительные модули
- Квантовая эффективность при 650 нм: 75%
- Скорость темнового сигнала: 25 - 1500 Гц
- «Мётртовое» время между импульсами: 22 нс
- Доступные опции: 4 канальная версия, НИР-оптимизированная

Кремниевые фотоумножители (SiPM)
- Эффективная площадь 3x3 мм
- 3600 микрочеек (50x50 мкм каждая)
- Спектральный диапазон: 350 – 850 нм
- Скорость темнового сигнала на мм²: 450 кГц

Excelitas Technologies – компания-производитель оптоэлектронных компонентов, выделенная из PerkinElmer. Предлагает инновационную, адаптированную к требованиям пользователя оптоэлектронику и передовые электронные системы для ведущих OEM-производителей.
Фоторезистивные HgCdTe детекторы
- Диапазон длин волн: 2-13 мкм
- С охлаждением / без охлаждения
- Тип корпуса: TO39 / BNC без окон

Фотоэлектромагнитные HgCdTe детекторы
- Диапазон длин волн: 2-11 мкм
- Оптимальная длина волны: 10,6 мкм
- Чувствительность > 1 x 107 (@10,6 мкм, 20 кГц)
- Специальный корпус с разъемом SMA с клиновидным окном из фторида бария

Фотогальванические HgCdTe детекторы
- Диапазон длин волн: 2-12 мкм
- С охлаждением / без охлаждения
- Тип корпуса: TO39 / BNC без окон

Предусилители для детекторов
- Компактные размеры
- Высокое соотношение сигнал/шум
- Ширина полосы до 250 МГц

ТЕС контроллеры для детекторов

Источники питания для детекторов

ПРИМЕНЕНИЕ
- Температурные измерения
- Химическая промышленность
- Защита окружающей среды
- Медицина
- Космическая промышленность
- Тестирование материалов

VIGO System S.A. — ведущий производитель неохлаждаемых фоторезистивных, фотоэлектромагнитных и фотогальванических детекторов на основе кадмий-рут-теллура на любые длины волн в диапазоне от 1 до 16 мкм. Кроме того, линейка продукции включает в себя источники питания, температурные контроллеры, программируемые предусилители, а также ИК камеры для томографии и систем ночного видения.
БЕСКОРПУСНЫЕ И ВЫСОКОСКОРОСТНЫЕ ФОТОПРИЕМНИКИ

Широкая линейка высокоскоростных чипов фотоприёмников, как основного компонента для систем передачи данных до 50 ГГц. Некоторые решения представлены ниже:

InGaAs PIN фотодиоды
- Диапазон длин волн: 1260 – 1620 нм
- Опции скоростей: 56 GБуд; 28 ГБ/с; 14 ГБ/с; 10 ГБ/с; 5 ГБ/с
- Макс. чувствительность: 1,1 A/Бт @1550 нм
- Мин. темновой ток: 2 нА
- Активная область: 12 – 80 мкм
- Макс. оптическая мощность: 10 дБм
- Рабочая температура: -40° ... + 105° С
- Многоканальные версии: До 2×32 ГБ/с; 12×28 ГБ/с; массивы пх4
- Попадание света: сверху, снизу, через линзу
- Доступно исполнение на керамическом Al2O3 носителе с металлизацией

GaAs PIN фотодиоды
- Оптимизация под длины волн: 830 – 860 нм
- Опции скоростей: 25 ГБ/с; 10 ГБ/с; 5 ГБ/с
- Макс. чувствительность: 0,6 A/Бт @850 нм
- Мин. темновой ток: <1 нА
- Активная область: 32 – 100 мкм
- Многоканальные версии: массивы пх4

Лавинные (APD) InP фотодиоды
- Диапазоны скоростей: 25 ГБ/с; 10 ГБ/с; 2,5 ГБ/с
- Обеспечивают чувствительность в -35дБм с коммерчески доступными TIA
- Большая апертура, опционально большая линза (100 мкм)
- Низкая температурная зависимость: 10 мВ/°С

Фотодиоды для мониторинга
- Оптимизация под длины волн: 980 – 1620 нм
- Попадание света сбоку и сверху
- Оптимизация для установки в корпуса лазерных диодов и модуляторов

Высокоскоростные фотоприёмники в герметичном корпусе с СВЧ-выходом

<table>
<thead>
<tr>
<th>Коротковолновый фотоприемник</th>
<th>Длинноволновый фотоприемник</th>
</tr>
</thead>
<tbody>
<tr>
<td>На основе GaAs PIN чипа</td>
<td>На основе InGaAs PIN чипа</td>
</tr>
<tr>
<td>Диапазон длин волн: 800 – 900 нм</td>
<td>Диапазон длин волн: 1260 – 1620 нм</td>
</tr>
<tr>
<td>Максимальная полоса: 33 ГГц</td>
<td>Максимальная полоса: 40 ГГц</td>
</tr>
<tr>
<td>Чувствительность: 0,5 A/Вт</td>
<td>Чувствительность: 0,95 A/Вт</td>
</tr>
<tr>
<td>Вход через многомодовое (MM 50/125 мкм) волокно</td>
<td>Вход через одномодовое (SM 9/125 мкм) волокно</td>
</tr>
</tbody>
</table>

Возможность изготовления продукции на заказ, варианты кастомизации
- Геометрические параметры
- Способ ввода излучения
- Просветляющие покрытия и фильтры
- Топология контактной площадки
- Зазор

Albis Optoelectronics — ведущий разработчик и производитель высокоскоростных фотодиодов. Полный цикл производства располагается в г. Рюшликон, Швейцария, включая чистые комнаты класса 100, лаборатории для тестирования и сертификации. Продукция компании отвечает требованиям стандартов Telcordia GR-468 и MIL-STD-883E.
АПД СЧЕТЧИКИ ФОТОНОВ

Одиночные лавинные детекторы на основе InGaAs/InP.
Одиночные лавинные детекторы нашли применение в таких областях, как квантовое распределение ключей (QKD), позитронно-эмиссионная томография, оптическая рефлектометрия и биомедицинские исследования благодаря своей весьма высокой эффективности детектирования (PDE) и низкой скорости темнового счета (DCR) в ближнем инфракрасном диапазоне длин волн от 1,0 до 1,7 мкм, а также не требуют охлаждения до криогенных температур.

Компания «ЛЛС» предлагает следующие варианты решений:

Лавинные детекторы одиночных фотонов (SPAD)
- Квантовая эффективность при 1550 нм: 70%
- Вероятность афтерпэлсинга (при -40°С): 10%
- Скорость темнового счета (ДЭ = 20%): 10 кГц
- Оптимизирован для диапазона: 1000 – 1600 нм

Лавинные детекторы одиночных фотонов со встроенным элементом Пельтье (SPAD with TEC)
- Квантовая эффективность при 1550 нм: 70%
- Вероятность афтерпэлсинга (при -40°С): 10%
- Скорость темнового счета (ДЭ = 20%): 2 кГц
- Оптимизирован для диапазона: 1000 – 1600 нм

Детектор для LiDAR на базе InGaAs/InP
- Входной импульс: 5-28 нс
- Встроенная CMOS
- Диаметр: 200 мкм
- Минимальный детектируемый сигнал: 10 нВт (@ 5 нс импульс)
- Разрешение групповых целей: 200 нс

Квантовое распределение ключей решает одну из основных задач криптографии — гарантированное, на уровне фундаментальных законов физики, распределение ключей между удаленными пользователями по открытым каналам связи. В качестве единицы криптографического шифра используются фотоны, поляризация которых (0°, 45°, 90°, 135°) можно измерить, только зная базис поляризации «++» или «-». Если для расшифровки используется базис, отличный от базиса поляризации, то на выходе получается случайный результат (0 или 1). Таким образом, злоумышленник не сможет расшифровать ключ, не зная базис поляризации каждого фотона. К тому же любое внешнее воздействие приводит к изменению состояния квантовой системы. На сегодняшний день квантовая криптография — это единственный вид шифрования со строго доказанной криптографической стойкостью.

Wooriro — разработчик и производитель активных волоконных компонентов на основе InGaAs/InP. Компания специализируется на производстве лавинных детекторов одиночных фотонов для квантовой криптографии и LiDARных систем.

www.lenlasers.ru
АКУСТООПТИЧЕСКИЕ МОДУЛЯТОРЫ

Акustoоптические полихроматические модуляторы (AOTFnC)
- перестраиваемые акустооптические фильтры, на кристалле TeO₂
- диапазон 450-1100 нм
- до 8 каналов
- разрешение 1-2 нм
- дифракционная эффективность >90%

Акustoоптические модуляторы и переключатели фиксированной частоты (MXXxxx-Ax-X)
- доступные материалы: кварц, TeO₂, Ge, плавленый кварц, легированные стекла
- доступные рабочие диапазоны: от 244 нм до 1600 нм
- частота сдвига: 40-350 МГц

АО устройства для выборки импульсов (MXXxx-Ax-X)
- устройства, позволяющие выбирать одиночные импульсы из потока импульсов
- на основе TeO₂, SiO₂
- рабочий диапазон: от 700 нм до 1600 нм
- частота повторения импульсов порядка 10 МГц – 1 ГГц

Акustoоптические перестраиваемые фильтры (AOTF)
- рабочий диапазон: от 350 нм до 2500 нм
- для лазерных и ламповых источников
- время перестройки: 2-9 мкс

Акustoоптические дефлекторы и переключатели переменной частоты
- рабочий диапазон: от 375 нм до 1600 нм
- с высоким (DTXX-xxx) и низким разрешением (MXX-Bxxx)

Устройства с волоконным выводом (MTxxx-XXX-Fio)
- рабочий диапазон: от 400 нм до 2100 нм
- тип волокна SM, PM
- максимальная лазерная мощность до 1 Вт

Акustoоптические модуляторы добротности (QCQxx-XXX)
- на основе кварца
- оптимизированный отвод тепла

RF драйверы для модуляторов и переключателей фиксированной частоты (MODAxxx-xW)
- на основе кварцевых тактовых генераторов
- частота: от 10 МГц до 3 ГГц
- время установки: от 2 нс до 100 нс

Конфигурация волоконного лазера с использованием АО модулятора добротности

AA Optoelectronics – производитель акустооптических и радио частотных устройств. Благодаря сотрудничеству со многими научно-исследовательскими центрами и университетами, продукты компании являются передовыми и обладают высоким качеством. Компания изготавливает акустооптические модуляторы по техническому заданию заказчика.
Электрооптические модуляторы являются ключевым элементом Э/О преобразования в современных системах передачи данных и индустриальных применениях. Самыми распространенными коммерчески доступными модуляторами являются модуляторы на основе LiNbO₃. Компания EOSpace сотрудничает с ведущими мировыми производителями модуляторов, такими как компания EOSpace (США), и предлагает широкую линейку продукции.

Амплитудные электрооптические модуляторы

<table>
<thead>
<tr>
<th>характеристика</th>
<th>значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Рабочие длины волн</td>
<td>1310, 1550 нм</td>
</tr>
<tr>
<td>Диапазон частот</td>
<td>10, 20, 40 (опционально 65 и 110 ГГц)</td>
</tr>
<tr>
<td>Вносимые потери</td>
<td>до 3 дБ</td>
</tr>
<tr>
<td>Полуволновое напряжение Vp (1ГГц)</td>
<td>до 3 В</td>
</tr>
<tr>
<td>Коэффициент экстинкции</td>
<td>Опционально до 60 дБ</td>
</tr>
<tr>
<td>Конфигурация</td>
<td>1x1, 1x2, 2x2; X-cut, Z-cut; нулевой чирп и пре-чирп</td>
</tr>
<tr>
<td>Температурный диапазон</td>
<td>Опционально расширенный: от -55°C до +125°C</td>
</tr>
</tbody>
</table>

Коротковолновые модуляторы

- Рабочие длины волн: 0.65, 0.78, 0.85, 0.98, 1.06 мкм
- Диапазон частот до 40 ГГц
- Вносимые потери до 2 дБ
- Коэффициент экстинкции до 50 дБ

Длинноволновые модуляторы

- Рабочие длины волн: 1.7, 2.0 мкм
- Диапазон частот до 20 ГГц
- Вносимые потери до 3 дБ

Специальные конфигурации

- Dual Drive модулятор
- Двойной параллельный I/Q модулятор (до 40ГГц)
- 1x2, 2x2 модуляторы с двойным выходом

Фазовые электрооптические модуляторы

<table>
<thead>
<tr>
<th>характеристика</th>
<th>значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Рабочие длины волн</td>
<td>0.7, 0.85, 0.98, 1.06, 1.3, 1.55, 1.7, 2.0 мкм</td>
</tr>
<tr>
<td>Диапазон частот</td>
<td>10, 20, 40, 60 ГГц</td>
</tr>
<tr>
<td>Вносимые потери</td>
<td>до 2 дБ</td>
</tr>
<tr>
<td>Полуволновое напряжение Vp (1ГГц)</td>
<td>до 2 В</td>
</tr>
</tbody>
</table>

Модуляторы поляризации

- Для контроля поляризации, скремблирования, измерения и компенсации PMD
- Рабочие длины волн: C+L диапазон
- До 8 ступеней в каскаде
- Полоса частот (@3дБ) более 1 МГц
- Вносимые потери менее 2 дБ

Фазовые 1x2 модулятор Y-типа (MIOC)

- Для применения в волоконно-оптических гироскопах

EOSpace — компания, которая проектирует и производит оптические интегральные схемы LiNbO₃ и компоненты с низкими потерями и большой пропускающей способностью. Продукты этой компании находят применение в телекоммуникационной и индустриальной промышленности. Компания EOSpace имеет собственную фабрику с полным циклом производства, которое включает в себя обработку, электрическую и оптическую сборку, тестирование.

www.lenlasers.ru
Оптические трансиверы представляют собой модуль для обмена данными, в который встроены передатчик (лазер) и приемник (фотодиод). Трансиверы являются ключевым элементом в современных телекоммуникационных сетях и имеют большое количество вариантов исполнения.

Компания «ЛТС» предлагает полную линейку оптических трансиверов для различных применений на базе решений от компаний Finisar, Source Photonics и многих других.

> Все трансиверы доступны как в стандартном (0°C to +70°C), так и в индустриальном (-40°C to +85°C) температурном диапазоне.

Оптические модули SFP / XFP

<table>
<thead>
<tr>
<th>Форм-фактор</th>
<th>Скорость передачи (макс.)</th>
<th>Длина волны</th>
<th>Дистанция передачи</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFP+</td>
<td>14.025 Gb/s</td>
<td>850 нм / 1310 нм</td>
<td>100 м / 10 км</td>
</tr>
<tr>
<td>XFP</td>
<td>11.3 Gb/s</td>
<td>850 нм / 1310 нм</td>
<td>300 м / 10 км</td>
</tr>
<tr>
<td>SFP28</td>
<td>28.05 Gb/s</td>
<td>850 нм / 1310 нм</td>
<td>100 м / 25 км</td>
</tr>
<tr>
<td>SFP28</td>
<td>11.3 Gb/s двунаправленный</td>
<td>1271 + 1331 нм</td>
<td>30 км</td>
</tr>
<tr>
<td>SFP+</td>
<td>11.3 Gb/s</td>
<td>1550 нм</td>
<td>80 км</td>
</tr>
<tr>
<td>XFP / SFP+</td>
<td>11.3 Gb/s</td>
<td>DWDM фиксированный</td>
<td>80 км</td>
</tr>
<tr>
<td>SFP</td>
<td>2.67 Gb/s</td>
<td>DWDM фиксированный</td>
<td>160 км</td>
</tr>
<tr>
<td>XFP / SFP+</td>
<td>11.3 Gb/s</td>
<td>DWDM перестраиваемый</td>
<td>80 км</td>
</tr>
<tr>
<td>SFP+</td>
<td>11.3 Gb/s двунаправленный</td>
<td>DWDM + DWDM</td>
<td>20 км</td>
</tr>
</tbody>
</table>

Оптические модули QSFP

<table>
<thead>
<tr>
<th>Форм-фактор</th>
<th>Скорость передачи (макс.)</th>
<th>Длина волны</th>
<th>Дистанция передачи</th>
</tr>
</thead>
<tbody>
<tr>
<td>QSFP+</td>
<td>41.2 Gb/s</td>
<td>850 нм / 1310 нм</td>
<td>300 м / 10 км</td>
</tr>
<tr>
<td>QSFP28</td>
<td>112 Gb/s</td>
<td>850 нм / 1310 нм</td>
<td>100 м / 10 км</td>
</tr>
</tbody>
</table>

Оптические модули CFP / CXP

<table>
<thead>
<tr>
<th>Форм-фактор</th>
<th>Скорость передачи (макс.)</th>
<th>Длина волны</th>
<th>Дистанция передачи</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFP / CFP4</td>
<td>112 Gb/s</td>
<td>850 нм / 1310 нм</td>
<td>100 м / 10 км</td>
</tr>
<tr>
<td>CFP2</td>
<td>103.1 Gb/s</td>
<td>850 нм / 1310 нм</td>
<td>300 м / 10 км</td>
</tr>
<tr>
<td>CXP</td>
<td>150 Gb/s</td>
<td>850 нм</td>
<td>300 м</td>
</tr>
<tr>
<td>CFP8</td>
<td>425 Gb/s</td>
<td>1310 нм</td>
<td>10 км</td>
</tr>
<tr>
<td>CFP2-ACO</td>
<td>256 Gb/s/ксогерентный</td>
<td>DWDM перестраиваемый</td>
<td>2000 км</td>
</tr>
</tbody>
</table>

Оптические модули для монтажа на плату SFF

<table>
<thead>
<tr>
<th>Форм-фактор</th>
<th>Скорость передачи (макс.)</th>
<th>Длина волны</th>
<th>Дистанция передачи</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFF 2x5</td>
<td>2.125 Gb/s</td>
<td>850 нм / 1310 нм</td>
<td>500 м / 10 км</td>
</tr>
<tr>
<td>SFF 2x7</td>
<td>4.25 Gb/s</td>
<td>850 нм / 1310 нм</td>
<td>550 м / 10 км</td>
</tr>
<tr>
<td>SFF 2x10</td>
<td>2.67 Gb/s</td>
<td>1310 нм / 1550 нм</td>
<td>40 км / 80 км</td>
</tr>
</tbody>
</table>

Оптические модули для монтажа на плату серии Endurance

- Для применения в жёстких условиях эксплуатации
- Устойчивость к вибрациям
- Температура хранения до -57°C to +85°C
- Компактный форм-фактор (половина корпуса SFF)

<table>
<thead>
<tr>
<th>Форм-фактор</th>
<th>Скорость передачи (макс.)</th>
<th>Длина волны</th>
<th>Дистанция передачи</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endurance</td>
<td>125 Mb/s – 10 Gb/s</td>
<td>850 нм</td>
<td>550 м</td>
</tr>
<tr>
<td>Endurance</td>
<td>125 Mb/s – 10 Gb/s</td>
<td>1310 нм</td>
<td>10 км</td>
</tr>
</tbody>
</table>
ОПТИЧЕСКИЕ ПЕРЕКЛЮЧАТЕЛИ

Оптические переключатели предназначены для маршрутизации оптических сигналов. Компания «ЛЛС» сотрудничает со всеми ключевыми производителями переключателей и может оказать помощь в подборе переключателя для любых задач.

Микромеханические переключатели

<table>
<thead>
<tr>
<th>Длина волн</th>
<th>230 – 2000 нм</th>
</tr>
</thead>
<tbody>
<tr>
<td>Скорость переключения</td>
<td>до 2 мс</td>
</tr>
<tr>
<td>Конфигурации</td>
<td>1хN</td>
</tr>
<tr>
<td>Волокно</td>
<td>SM, PM, MM</td>
</tr>
</tbody>
</table>

ПРИМЕНЕНИЕ:
• Биомедицина
• Оптическая когерентная томография (ОCT)
• Конфокальная лазерная микроскопия
• Системы контроля поверхности

MEMS переключатели

<table>
<thead>
<tr>
<th>Длина волн</th>
<th>760 – 1670 нм</th>
</tr>
</thead>
<tbody>
<tr>
<td>Скорость переключения</td>
<td>до 1 мс</td>
</tr>
<tr>
<td>Конфигурации</td>
<td>до 1х36 (какадом до 1х256)</td>
</tr>
<tr>
<td>Волокно</td>
<td>SM, PM, MM</td>
</tr>
<tr>
<td>Повторяемость</td>
<td>до 0,002 дБ</td>
</tr>
<tr>
<td>Компактность</td>
<td>до 10 x 6.6 x 4.6мм</td>
</tr>
</tbody>
</table>

ПРИМЕНЕНИЕ:
• Телекоммуникации
• Квантовые коммуникации
• Сенсорика и системы мониторинга

Высокоскоростные переключатели

<table>
<thead>
<tr>
<th>Длина волн</th>
<th>Магнитооптические</th>
<th>Электрооптические</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1200 – 1600 нм</td>
<td>760 – 1650 нм</td>
</tr>
<tr>
<td>Скорость переключения</td>
<td>до 10 мкс</td>
<td>до 0,1 нс</td>
</tr>
<tr>
<td>Фиксация состояния</td>
<td>Только да</td>
<td>Только нет</td>
</tr>
<tr>
<td>Конфигурации</td>
<td>до 1х16</td>
<td>1х2 (до 8х8 каскадом)</td>
</tr>
<tr>
<td>Волокно</td>
<td>SM, PM</td>
<td>SM, PM</td>
</tr>
<tr>
<td>Доступны высокомощные версии (до 5 Вт)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ПРИМЕНЕНИЕ:
• Телекоммуникации
• Квантовые коммуникации
• Сенсорика и ЛИДАРы

Полупроводниковые оптические усилители / переключатели (SOA)

<table>
<thead>
<tr>
<th>Диапазоны длин волн</th>
<th>1000 – 1650 нм</th>
</tr>
</thead>
<tbody>
<tr>
<td>Усиление сигнала</td>
<td>до 30 дБ</td>
</tr>
<tr>
<td>Выходная мощность</td>
<td>до 17 дБм</td>
</tr>
<tr>
<td>Время переключения</td>
<td>3 нс</td>
</tr>
<tr>
<td>Волокно</td>
<td>SM, PM</td>
</tr>
</tbody>
</table>

LEONI
AGILTRON
Sercalo
Aeon

www.lenlasers.ru
ВОЛОКОННО-ОПТИЧЕСКИЕ УСИЛИТЕЛИ

Волоконные оптические усилители на сегодняшний день являются наиболее эффективным коммерчески доступным средством усиления оптического сигнала в оптическом волокне. Инженеры компании «ЛЛС» готовы оказать помощь в подборе усилителей для любых задач, а также предложить решения российского производства.

Эрбиевые усилители диапазона 1,55 мкм (EFDA, YEDFA)
Стандартные и высокомощные усилители непрерывного сигнала

<table>
<thead>
<tr>
<th>Спектральный диапазон</th>
<th>Количество портов</th>
<th>Мощность насыщения</th>
<th>Шум</th>
</tr>
</thead>
<tbody>
<tr>
<td>1528 – 1567 нм</td>
<td>1</td>
<td>до 23 дБм</td>
<td>< 5 дБ</td>
</tr>
<tr>
<td>1567 – 1620 нм</td>
<td>4</td>
<td>до 43 дБм</td>
<td></td>
</tr>
<tr>
<td>1535 – 1565 нм</td>
<td>8</td>
<td>до 25 дБм в порт</td>
<td>5 - 8 дБ</td>
</tr>
<tr>
<td>1567 – 1620 нм</td>
<td>32</td>
<td>до 19 дБм в порт</td>
<td></td>
</tr>
</tbody>
</table>

Импульсные усилители

<table>
<thead>
<tr>
<th>Спектральный диапазон</th>
<th>Длительность импульса</th>
<th>Мощность насыщения</th>
<th>Частота импульсов</th>
</tr>
</thead>
<tbody>
<tr>
<td>1540 – 1560 нм</td>
<td>100 – 1000 фс</td>
<td>50 – 200 мВт</td>
<td>10 – 25 МГц</td>
</tr>
<tr>
<td></td>
<td>50 пс</td>
<td>25 – 40 дБм</td>
<td>1 МГц – 100 ГГц</td>
</tr>
<tr>
<td></td>
<td>10 – 1000 нс</td>
<td>до 1 кВт в импульсе</td>
<td>100 кГц – 100 МГц</td>
</tr>
</tbody>
</table>

- Доступны PM версии

Иттербиевые усилители диапазона 1,0 мкм (YDFA)

<table>
<thead>
<tr>
<th>Спектральный диапазон</th>
<th>Режим</th>
<th>Мощность насыщения</th>
</tr>
</thead>
<tbody>
<tr>
<td>1054 – 1074 нм</td>
<td>CW</td>
<td>до 43 дБм</td>
</tr>
<tr>
<td></td>
<td>Пикосекундный</td>
<td>до 33 дБм</td>
</tr>
<tr>
<td></td>
<td>Наносекундный</td>
<td>до 40 дБмт</td>
</tr>
</tbody>
</table>

- Доступна расширение до 1090 нм
- Доступны PM версии
- AGC, APC или ACC режим контроля
- OEM-модуль, SFP-модуль или лабораторное исполнение

Тулиевые усилители диапазона 2,0 мкм (TDFA):
- Диапазон длин волн: 1880 – 2000 нм / 1900 – 2050 нм
- Мощность насыщения: 200 мВт / 3 Вт
- Коэффициент шума менее 8 дБ

Празеодимовые усилители O-диапазона (PDFA):
- Диапазон длин волн: 1260 – 1360 нм
- Мощность насыщения до 20 дБм
- Коэффициент шума менее 7 дБ

ВКР-усилители (рамановские)
- Диапазон длин волн: 1400 – 1610 нм
- Мощность накачки 300 – 1200 мВт
- Вносимые потери менее 0.7 дБ
- Режим управления ACC
КОМПОНЕНТНАЯ БАЗА РАДИОФОТОНИКИ: ОСНОВНЫЕ УЗЛЫ, КЛЮЧЕВЫЕ ХАРАКТЕРИСТИКИ

Под термином «радиофотоника» далее мы будем понимать применение технологий фотоники при решении задач радиоэлектроники. Таких задач может быть много, но в качестве базовой задачи будет рассматриваться передача ВЧ/СВЧ сигналов по оптическому волокну.

Ключевыми компонентами систем радиофотоники являются элементы Э/О и О/Э преобразования.

КОМПОНЕНТЫ Э/О ПРЕОБРАЗОВАНИЯ:
► Лазер с прямой модуляцией (DM DFB)
► Лазер со встроенным электроабсорбционным модулятором (EML)
► Непрерывный лазер (CW) с внешним модулятором

К лазерам, используемым для аналоговой передачи данных, предъявляются повышенные требования. В частности, они должны иметь низкий шум, высокую линейность и мощность излучения.

ДОСТИЖИМЫЕ ХАРАКТЕРИСТИКИ РАЗЛИЧНЫХ ТИПОВ ЛАЗЕРОВ

<table>
<thead>
<tr>
<th>Длина волны</th>
<th>DFB с прямой модуляцией</th>
<th>EML</th>
<th>Непрерывный DFB лазер</th>
</tr>
</thead>
<tbody>
<tr>
<td>1310 нм, 1550 нм, любая из сетки CWDM / DWDM</td>
<td>40 мВт</td>
<td>120 мВт</td>
<td></td>
</tr>
<tr>
<td>Оптическая мощность</td>
<td>10 Гц</td>
<td>40 Гц</td>
<td>CW</td>
</tr>
<tr>
<td>Частота модуляции</td>
<td>-155 дБ/Гц</td>
<td>---</td>
<td>-168 дБ/Гц</td>
</tr>
<tr>
<td>RIN</td>
<td>30-45 дБ</td>
<td>35 дБ</td>
<td>30-45 дБ</td>
</tr>
<tr>
<td>SMSR</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

В схемах с внешней модуляцией как правило применяются электрооптические модуляторы на основе нитрида лития (LiNbO₃).

ОСОБО ВАЖНЫЕ ПАРАМЕТРЫ И ИХ ДОСТИЖИМЫЕ ХАРАКТЕРИСТИКИ

Рабочая полоса частот	DC - 110 Гц
Полуволновое напряжение	менее 2 В
Вносимые потери	менее 2 дБ
Коэффициент экстинкции	60 дБ

Не менее важными элементами являются фотоприемники

ЭЛЕМЕНТЫ О/Э ПРЕОБРАЗОВАНИЯ

Для повышения динамического диапазона в системах аналоговой передачи данных помимо стандартных фотодиодов, используемых в телекоммуникациях, применяют фотоприемники с повышенной входной мощностью.

ОСОБО ВАЖНЫЕ ПАРАМЕТРЫ И ИХ ДОСТИЖИМЫЕ ХАРАКТЕРИСТИКИ

<table>
<thead>
<tr>
<th>Фотоприемники</th>
<th>Высокоскоростные</th>
<th>Высокомощные</th>
</tr>
</thead>
<tbody>
<tr>
<td>Рабочая длина волны</td>
<td>1250 - 1650 нм (InGaAs)</td>
<td>1250 - 1650 нм (InGaAs)</td>
</tr>
<tr>
<td>Диапазон частот</td>
<td>DC - 100 Гц</td>
<td>DC - 40 Гц</td>
</tr>
<tr>
<td>Максимальная входная оптическая мощность</td>
<td>10 дБм</td>
<td>26 дБм</td>
</tr>
<tr>
<td>Чувствительность</td>
<td>0.5 - 0.95 A/Вт</td>
<td>0.5 - 0.85 A/Вт</td>
</tr>
</tbody>
</table>

Помимо этого могут понадобиться:
• Оптические линии задержки
• Усилители
• Переключатели
• Мультипlexerсы
• Аттенюаторы
• Мониторы мощности
• Контроллеры рабочей точки модулятора

Комбинируя оптимальные компоненты можно получить наилучшие показатели динамического диапазона системы. Инженеры компании «ЛПС» готовы оказать помощь в подборе компонентной базы для любых задач радиофотоники

www.lenlasers.ru
Данная схема иллюстрирует два варианта тестирования волоконно-оптического тракта трансляции радиосигнала

Комбинация высококачественных малошумящих компонентов позволяет добиться трансляции радиосигнала на частотах до 60 ГГц с хорошим динамическим диапазоном. При реализации такой схемы необходимо контролировать параметры ключевых узлов системы, проводить поляризационные и спектральные измерения.

Ключевыми элементами такой схемы являются:
- Лазерный источник DFB от компании AOI с драйвером питания Maiman Electronics
- Контроллер поляризации от компании Novoptel, который позволяет проводить все возможные виды поляризационных измерений
- Электрооптический модулятор с низкими потерями от компании EO Space
- Малошумящий усилитель компании OMMIC
- Контроллер рабочей точки модулятора Coherent Solutions
- Оптический анализатор спектра EXFO с высокой скоростью свитции
- Оптический усилитель компании Amonics
- Высокочувствительный фотоприемник Albis
- ВЧ-усилитель мощности Vectrawave

Значительно упростить процесс организации волоконно-оптической линии позволяют готовые модули и подсистемы. Тестирование систем передачи радиосигнала по оптическому волокну (RoF) требует высокопроизводительные генераторы ВЧ-сигнала и анализаторы оптической модуляции.

Ключевыми элементами такой схемы являются:
- Широкополосный генератор произвольной формы компании Keysight Technologies, который позволяет создавать все возможные стандартные типы модуляции, а также пользовательские сигналы
- Волоконно-оптические малошумящие тракты трансляции радиосигнала от зарубежных и отечественных производителей
- Высокопроизводительный анализатор модуляции компании Keysight Technologies, позволяет проводить все виды измерений модулированного сигнала
РАДИОФОТОННЫЕ ТРАКТЫ

Готовые радиофотонные тракты позволяют транслировать радиосигналы по оптическому волокну без необходимости подбирать характеристики отдельных компонентов, так как модули уже имеют СВЧ вход и выход, и готовы к использованию. Компания «ЛПС» предлагает решения от мировых лидеров отрасли (включая решения компании Microwave photonics systems), а также изделия российского производства.

ДОСТИЖИМЫЕ ХАРАКТЕРИСТИКИ МОДУЛЕЙ

Тракты трансляции сигналов до 3,5 ГГц
- Диапазон частот: от 1 МГц до 3,5 ГГц
- Передача на длинах волн: 1310 нм, 1550 нм, CWDM, DWDM
- Диапазон рабочих температур: от -60°С до +85°С;
- Равномерность: ±1 дБ
- Однодекаберная компрессия до +15дБм*
- Уровень шума менее 2 дБ*
- Динамический диапазон (SFDР) до 120 дБ
- Управление по RS-232 / RS-485

*Модули имеют внутри встроенный МШУ и два аттенюатора, управляя положениями которых можно подбирать оптимальную конфигурацию для конкретной задачи

ТАКЖЕ ДОСТУПНЫ

Тракты трансляции сигналов 1 МГц - 12 ГГц
Тракты трансляции сигналов 500 МГц - 18 ГГц
Тракты трансляции сигналов 1 ГГц - 24 ГГц
Тракты трансляции сигналов 1 ГГц - 40 ГГц
Оптические линии задержки до 18 ГГц

Microwave Photonics Systems — компания специализируется на разработке и производстве радиочастотных, микроволновых и волоконно-оптических компонентов. Производитель предлагает решения для трансляции радиочастотного сигнала по оптическому волокну в диапазоне от 1 МГц до 40 ГГц. Трансмиттеры и ресиверы компании рассчитаны на работу в расширенном температурном диапазоне (от -60°С до +85°С).
Системы Power-over-fiber позволяют передавать электрическую мощность на расстояние по оптическому волокну путём последовательного Э/О и О/Э преобразования. Используя диэлектрические оптические волокна, система может быть размещена в недоступных для классических способов источников питания местах. Одним из лидеров по разработке таких систем является компания MH GoPower, использующая собственные фотovoltaические кремниевые преобразователи и 9xx-нм лазеров. Инженеры компании «ЛЛС» готовы оказать помощь в подборе оптимальной системы передачи мощности по волокну.

Фотovoltaический преобразователь — ключевой элемент систем PoF

<table>
<thead>
<tr>
<th>Максимальная выходная электрическая мощность</th>
<th>Выходное напряжение</th>
<th>Эффективность преобразования</th>
<th>Охлаждение</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,6 Вт</td>
<td>6 В</td>
<td>21 %</td>
<td>Нет</td>
</tr>
<tr>
<td>1 Вт</td>
<td>6 В</td>
<td>26 %</td>
<td>Пассивное</td>
</tr>
<tr>
<td>5 Вт</td>
<td>15 В</td>
<td>26 %</td>
<td>Пассивное</td>
</tr>
<tr>
<td>10 Вт</td>
<td>15 В</td>
<td>26 %</td>
<td>Водяное</td>
</tr>
<tr>
<td>10 Вт*</td>
<td>15 В</td>
<td>26 %</td>
<td>Пассивное</td>
</tr>
</tbody>
</table>

*ожидается

Лазерные источники 976 нм

Лазерные системы серии LSM представляют собой простое решение «под ключ» для работы с PoF. Система включает в себя модуль лазерного источника (LSM) с волоконным патч-кордом, который должен быть подключен к фотоэлектрическим преобразователям (PPC).

- выходная мощность до 3 Вт в волокне 62,5/125 мкм
- выходная мощность до 100 Вт в волокне 105/125 мкм
- волоконно-оптический кабель и охладитель TEC

Системы мониторинга на основе технологии передачи мощности по волокну

- Мониторинг температуры и влажности, частичного разряда и температуры на шине.
- Отсутствие низковольтной проводки в отсеке высокого напряжения.

MH GoPower Company — производитель высокоэфективных вертикальных многоэлементных фотозлементов на основе кремния, которые обеспечивают передачу мощности по оптоволокну (PoF) с использованием 9xx-нм лазеров. Недавно MHGP выпустила линейку фотогальванических приёмников с не имеющий аналогов гибкостью в размере, напряжением и мощностью, что способствует появлению новых высоконадежных, мощных и недорогих приложений PoF.
ОБОРУДОВАНИЕ

▶ Твердотельные лазеры
▶ Волоконные лазеры
▶ Непрерывные и импульсные лазерные системы
▶ Узкополосные и широкополосные источники излучения

СЕРВИС

▶ Ремонт и обслуживание волоконных лазеров
▶ Ремонт твердотельных лазеров
ПОДБОР ТВЕРДОТЕЛЬНЫХ ЛАЗЕРОВ

Компания «ЛЛС» системы работает с большим количеством производителей твердотельных лазеров для различных задач. Ассортимент нашей продукции включает в себя, как и относительно простые маломощные настольные лазеры, так и сложные технологические решения.

Приобретая лазер или лазерную систему у нас, вы получаете:

► Грамотную консультацию и помощь в выборе от наших специалистов
► Консультация по работе с оборудованием
► Сборка и пуско-наладка оборудования
► Обучение работе с оборудованием
► Сервисное обслуживание

РЕМОНТ ТВЕРДОТЕЛЬНЫХ ЛАЗЕРОВ

На базе своей лаборатории, компания «ЛЛС» предлагает услуги по ремонту твердотельных лазеров. Сотрудники нашей компании, имеющие большой опыт работы с лазерными системами, готовы отремонтировать Ваш сломанный твердотельный лазер от любого производителя.

Виды ремонта

► Замена источников накачки
► Работа с электронной системой
► Привлечение зарубежных производителей для консультаций

УСЛУГА «РЕМОНТ ТВЕРДОТЕЛЬНЫХ ЛАЗЕРОВ» ДАЕТ ВАМ ВОЗМОЖНОСТИ:

► Исправить поломку без дорогостоящей пересылки оборудования за границу.
► Вернуть работоспособность системе в кратчайшие сроки.
► Дать вторую жизнь «писанному» устройству
Спектр выпускаемых изделий включает в себя лазеры от УФ диапазона до ближнего ИК диапазону: 266нм, 280нм, 375нм, 405нм, 445нм, 473нм, 488нм, 515нм, 532нм, 553нм, 561нм, 594нм, 633нм, 638нм, 642нм, 660нм, 705нм, 730нм, 785нм, 830нм. Максимальная мощность лазеров составляет 650 мВт.

Все лазерные модули и твердотельные лазеры с диодной накачкой производятся в компактных корпусах 100мм x 40мм x 32мм, 100мм x 40мм x 40мм.

ОСНОВНЫЕ СЕРИИ DPSS ЛАЗЕРОВ И ЛАЗЕРНЫХ ДИОДНЫХ МОДУЛЕЙ OXXIUS:
• Серия LMX с запатентованной монолитной архитектурой DPSS
• Серия Oxxius LasreBoxx основанная на инновационных лазерных диодах, интегрированных в высокопроизводительные модули

Одночастотные DPSS лазеры на длине волны 553нм – LMX-553S:
• Длина волны излучения: 553 нм
• Ширина спектральной линии: < 1 МГц
• Длина когерентности: >50 м
• Выходная мощность оптического излучения: от 50 мВт до 500 мВт
• Режим работы: непрерывный
• Линейность поляризации: > 100:1, горизонтальная

Непрерывные лазерные модули на длинах волн 266нм и 280нм:
• Центральные длины волн: 266,2 нм 280,6 нм
• Ширина спектральной линии: ≤ 100 МГц
• Поляризация: линейная
• Стабильность мощности в течении 8 часов: ±2%
• Поляризационный коэффициент экстинкции: ≥20дБ

C-WAVE – перестраиваемые лазерные источники непрерывного излучения
C-WAVE позволяет переставить длину волны как в ви- димом, так и в ИК диапазонах без изменения лазерных сред или оптических компонентов. Система полностью автоматизирована.
• Диапазон длин волн: 450-650 нм (видимый) и 900-1300нм (ИК);
• Выбор длины волн: управление компьютером;
• Выходная мощность: > 200 мВт для ВД, > 400 мВт для ИК;
• Ширина линии: <1 МГц
• Профиль пучка TEM00, M2<1.2.

TERAHERTZ TECHNOLOGY
Для публичной безопасности
Готовые к использованию терагерцовые спектрометры и системы сканирования:
► T-SENSE® система визуализации для обнаружения скрытых объектов в письменных и небольших посылках.
► T-COGNITION® спектrometer для идентификации скрытых опасных веществ с высокой точностью.

TERAHERTZ TECHNOLOGY
Для неразрушающего контроля
► T-SENSE® - система визуализации для сканирования примесей, мониторинг уровней заполнения, процессов микросварки, сушки и обнаружения усадки или полостей в неметаллических материалах.
► T-SPECTRALYZER® - терагерцовый спектрометр для идентификации веществ сквозь упаковку, анализа химических веществ в виде порошка и таблеток, анализа жидкостей и газов, а также для исследования легированных полупроводниковых материалов:
- диапазон частот 0,1 - 2,5 ТГц;
- динамический диапазон до 54 дБ.

Oxxius – разработчик и производитель лазерных диодных модулей и твердотельных лазеров с диодной накачкой (DPSS). Про- дукция компании применяется в фotonике, биофотонике, метрологии, спектроскопии, голографии, интерферометрии, и др.

Hübner Photonics – группа компаний, произво- дитель высокотехнологичного оборудования для различных областей науки и техники. Многолетний опыт компании и большое число квалифицирован- ного персонала делает продукцию Hübner надежной и качественной.
Наносекундные лазеры
- Высокомощные решения с энергией импульсов до 1,5 Дж на длине волны 1064 нм и частотой повторения 100 Гц
- Длительность импульса: <20 нс
- Встроенные или внешние генераторы гармоник: второй (532 нм), третий (355 нм), четвертый (266 нм) и пятый (213 нм) гармоники

Пикосекундные лазеры:
- Импульсная мощность до 6 Вт на длине волны 1064 нм и более 3 Вт на длине волны 532 нм
- Длительность импульса: <10 нс

Фемтосекундные лазеры:
- Импульсная мощность до 8 Вт на длине волны 1035 нм
- Длительность импульса до 200 фс
- Работа в видимом (518 нм) и УФ (345нм, 259нм) областях спектра
ЛАЗЕР-КОМПАКТ (Россия) - представляет импульсные (ультрафиолетовые, зеленые, инфракрасные и многоволновые) и непрерывные (зеленые и инфракрасные) лазеры собственного производства.
Лазеры компактны, прозрачны в использовании, имеют воздушное охлаждение и обладают превосходными техническими характеристиками. Они являются главными составляющими аналитического, промышленного, медицинского и научного оборудования для различных применений.

НПРЕРЫВНЫЕ LAЗЕРЫ

- DTL-423 (1053 нм CW, 300 мВт, 1 Вт, 2 Вт и 2,5 Вт)
- DTL-322 (1064 нм CW, 300 мВт, 1 Вт, 2 Вт)
- DTL-413 (527 нм CW, 300 мВт, 500 мВт, 1 Вт и 1,5 Вт)

ПРИМЕНЕНИЕ
контрольно-измерительное оборудование, медицинское оборудование, научные исследования, контроль качества продукции, кристаллы, оптический пинчет, лазерное шоу, настройка и позиционирование, спектроскопия.

Непрерывные лазеры Т-серии
Лазерные модули:
- LCM-T-111 (532 нм, 1 мВт, 10 мВт и 20 мВт, 3,3 – 3,5 В / ≤ 1,4 А)
- LCM-T-111-AP (532 нм, 10 и 20 мВт, 5 В / ≤ 1,4 А, возможность регулировки мощности и TTL-модуляции)
- LCM-T-112 (1064 нм, 10, 100 и 200 мВт, 3,3 – 3,5 В / ≤ 1,4 А)

Лазерные системы
- LCS-T-11 (532 нм, 3 мВт, с блоком питания от сети 220 В)
- LCS-T-12 (1064 нм, 50 мВт, с блоком питания от сети 220 В)

Одночастотные лазеры
- SLM-417 (532 нм, одночастотный, 20 мВт и 50 мВт, низкий уровень шума (< 0,2% RMS), длина когерентности > 50 м, ручная регулировка мощности, полная система)
- LCM-S-111 (532 нм, одночастотный лазерный модуль, 10, 20 и 50 мВт, низкий уровень шума (< 0,2 % RMS), длина когерентности > 50 м: 4,5 - 6 В / ≤ 4 А)
- LCM-S-112 (1064 нм, одночастотный лазерный модуль, 100 мВт, низкий уровень шума: 4,5 - 6 В / ≤ 4 А)

ПРИМЕНЕНИЕ
Рамановская спектроскопия, лазерные микроскопы, интерферометрия, спектроскопия, голография, цитометрия, контрольно-измерительное оборудование, научные исследования.

ИМПУЛЬСНЫЕ LAЗЕРЫ

Перестраиваемые лазеры
- TiSon GSA-1000 (700-910 нм, на 1 кГц: > 1000 мкДж на 800 нм, длительность импульса < 10 нс)
- TiSon GSB-300 (700-900 нм, на 1 кГц: > 300 мкДж на 800 нм, длительность импульса < 6 нс)

Серия «ТЕХНОЛОГИЯ» для OEM-применений
Лазеры серии «ТЕХНОЛОГИЯ» включают четыре линии:
Express (до 300 кВт на длине волны 1053 нм и до 250 кВт на длине волны 527 нм)
Specific (до 2-х мкДж@ 1 кГц в ИК и до 1 мкДж@ 1 кГц в зеленом диапазоне)
Basic (с экономической ценой и малым энергопотреблением)
Advanced (высокая средняя мощность (на частоте 4 кГц), до 2-х мкДж@ 1 кГц в ИК и до 1 мкДж@ 1 кГц в зеленом диапазоне)

Многоволновые лазеры
- TECH-527 Basic (2 длины волны) 527 & 1053, >200 мкДж@1 кГц (527 нм) & >200 мкДж@1 кГц (1053 нм)
- TECH-351 Basic - (3 длины волны), 351, 527 & 1053, >120 мкДж@1 кГц (351 нм)>100мкДж@1 кГц (527 нм)& >150 мкДж@1 кГц (1053 нм)
- TECH-263 Basic - (3 длины волны), 263&35781053, >10 мкДж@1 кГц (263 нм)>100 мкДж@1 кГц (527 нм) &>100 мкДж@1 кГц (1053 нм)

DTL-серия - Линия «ГРАНАТ»
- DTL-324QT (1064 нм, 100 мкДж @ 1 кГц)
- DTL-314QT (532 нм, 25 мкДж @ 1 кГц)
- DTL-375QT (355 нм, 20 мкДж @ 1 кГц)
длительность импульса < 10 нс на 1 кГц, TEM00, 0 - 30 кГц, внешний/внутренний запуск, напряжение питания 12 ± 10% В или 90 ÷ 264 В (с сетевым адаптером)
- «ГРАНАТ» (355 нм, 20 мкДж @ 200 – 2000 Гц, внешний запуск, модель для OEM)
Компания «ЛЛС» предлагает волоконные лазеры для решения индустриальных и научных задач. Мы предлагаем волоконные лазеры и усилители различных конфигураций.

- Ультрабыстрые лазеры (фс, нс, пс)
- Узкополосные лазеры (до 0,1 кГц)
- Суперконтинуумные источники (до 4200нм)
- Источники типа ASE (1064, 1550, и 1900нм)
- Лазеры на диапазон среднего ИК (1,9-4,2мкм)

РЕМОНТ И ОБСЛУЖИВАНИЕ ЛАЗЕРОВ

Ремонт волоконного лазера возможен только на профессиональном оборудовании при наличии уникального опыта. Волоконные лазеры могут выйти из строя при снижении качества питания, физическом воздействии, и воздействии температуры окружающей среды.

Ключевые особенности
- Диагностика позволит найти и устранить проблему в минимальные сроки
- Предложим самый выгодный для вас вариант: ремонт лазерных установок можно выполнить разными способами: мы подберем самые качественные запчасти по доступным ценам.
- Гарантируем сохранность вашей техники
- Мы готовы поделиться с вами накопленным опытом и поможем избежать дальнейших проблем в эксплуатации лазера
- При необходимости наши специалисты помогут с установкой и настройкой лазерной установки. Вы получите лучший результат работы!

Типы обслуживаемых волоконных лазеров
- Непрерывные волоконные лазеры с мощностью излучения до 2 кВт
- Импульсно-périодические волоконные лазеры
- Узкополосные волоконные лазеры
- Источники белого света
- Диодные лазеры
ВОЛОКОННЫЕ ЛАЗЕРЫ: 1064 НМ, 1550 НМ, 2000 НМ

Лазерные модули 1550 нм
- Модуль для LIDAR, длительность импульса 100-1000 нс, ширина линии 1, 3, 15, 100 кГц
- Высокомощные, до 50 Вт, длительность импульса 100-1000 нс
- Узкополосные, энергия импульса до 150 мкДж, длительность импульса 100-1000 нс
- Рамановские, до 800 мВт, до 4 длина волн накачки, диапазон 1525 – 1563 нм, 1528 – 1605 нм

Лазерные модули 1030-1080 нм

<table>
<thead>
<tr>
<th>Модель</th>
<th>Rainbow 1064</th>
</tr>
</thead>
<tbody>
<tr>
<td>Длина волны, нм</td>
<td>1030-1064</td>
</tr>
<tr>
<td>Длительность импульса</td>
<td><15 пс</td>
</tr>
<tr>
<td>Импульсная мощность</td>
<td>>25 кВт</td>
</tr>
<tr>
<td>Импульсные лазеры, настраиваемая длительность импульса от 10 нс до 1 мкс</td>
<td></td>
</tr>
</tbody>
</table>

Серия источников на длину волны 2 мкм
- Ультрабыстрый лазер 2,8 мкм
- Перестраиваемый лазер 2,8-3,6 мкм
- Широко перестраиваемый лазер 2 мкм (1900-2050 нм)
- Широко перестраиваемый лазер 2,8-4,2 мкм
- Высокомощный туннельный лазер (1900-2050 нм)
 - Версия 30 Вт и 80 Вт
 - M2 = 1,1
- Узкополосный туннельный лазер (полоса 2 МГц)
- Широкополосный ASE источник (1900-1930 нм)

Источники типа ASE и SLD
- Источники спонтанного излучения (ASE)
- C-band ASE, мощностью от +10 дБм до +33 дБм
- C+L band ASE, мощностью от +10 дБм до +25 дБм
- 1мкм ASE, мощностью от +10 дБм до +33 дБм
- SLD источники излучения
- Длины волн 650 – 1650 нм
- OCT SLD с ~190 нм, длины волн 890 – 1080 нм, мощностью 1 мВт
- CWDM SLD с ~400 нм, длины волн 1250 – 1650 нм, мощностью 10 мВт

Волоконные решения от производителей эрбиевых волоконных усилителей и лазеров, иттербиеово-эрбиевых усилителей и лазеров высокой мощности, волоконных лазеров и широкополосных источников в среднем ИК- диапазоне.

www.lenlasers.ru
Суперконтинуумные лазеры
Лазеры широкополосного белого света с дифракционно-ограниченным выходом в диапазоне длин волн 400-4200 нм.

<table>
<thead>
<tr>
<th>Модель</th>
<th>Диапазон</th>
<th>Выходная мощность</th>
<th>Частота повторения</th>
<th>Особенности</th>
</tr>
</thead>
<tbody>
<tr>
<td>SuperK EVO OEM</td>
<td>400-2400 нм</td>
<td>до 10 Вт</td>
<td>постоянная</td>
<td>индустриальный, гибкие решения для охлаждения (воздух или вода)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20-320 МГц</td>
<td></td>
</tr>
<tr>
<td>SuperK EVO</td>
<td>400-2400 нм</td>
<td>до 3 Вт</td>
<td>постоянная</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20 МГц</td>
<td></td>
</tr>
<tr>
<td>SuperK MIR и IR</td>
<td>900-4200 нм</td>
<td>> 450 мВт</td>
<td>постоянная</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,5 МГц</td>
<td></td>
</tr>
<tr>
<td>Fianium WhiteLase</td>
<td>400-2400 нм</td>
<td>до 10 Вт</td>
<td>постоянная или переменная (МГц)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIANIUM WHITELASE MICRO</td>
<td>400-2400 нм</td>
<td>> 200 мВт</td>
<td>постоянная</td>
<td>габариты 210х300х60 мм</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 МГц с пс импульсами</td>
<td></td>
</tr>
<tr>
<td>SUPERK EXTREME</td>
<td>400-2400 нм</td>
<td>до 3,5 Вт</td>
<td>постоянная</td>
<td>может быть преобразован в перестраиваемый лазер с 16 линиями</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>78 МГц</td>
<td></td>
</tr>
<tr>
<td>SUPERK COMPACT</td>
<td>450-2400 нм</td>
<td>> 110 мВт</td>
<td>переменная</td>
<td>габариты 93х221х332 мм дли-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>от 1 Гц до 20 кГц</td>
<td>тельность импульса < 2 нс</td>
</tr>
</tbody>
</table>

Фильтры и комплектующие для суперконтинуума
Управляемые компьютером фильтры, для перестройки суперконтинуумных лазеров в широкополосные перестраиваемые лазеры и перехода в УФ-область.

- **LLTF**
 однолинейный перестраиваемый фильтр с высокой контрастностью, 400-1000 нм / 1000-2300 нм, ширина полосы 2,5 / 5,0 нм

- **SUPERK VARIA**
 однолинейный перестраиваемый фильтр, 400-840 нм, ширина полосы 10-100 нм

- **SUPERK SELECT**
 многолинейный перестраиваемый фильтр, 400-2000 нм, ширина полосы 0.5-20 нм

- **SUPERK SPLIT**
 сплиттер суперконтинуума, фильтр, который позволяет разделять спектр на два спектральных выхода, VIS / IR: 450-830 нм / 915-2400 нм, NIR / IR: 600-1120 нм / 1180-2400 нм

- **SUPERK EXTEND-UV**
 блок для расширения суперконтинуума в УФ диапазон для лазеров SuperK EXTREME и COMPACT, диапазоны 265-345 и 350-480 нм

- **SUPERK CONNECT** (блок передачи по волокну широкополосного излучения)
Сверхбыстрые лазеры
Сверхбыстрые лазеры NKT Photonics представляют широкий диапазон длительностей импульсов от фемтосекунд до пикосекунд и выходной мощностью до 100 Вт. Перестраиваемая или фиксированная частота повторения, режим одиночных импульсов или непрерывного следования импульсов. Возможно исполнение для OEM-решений.

Фемтосекундные лазеры

<table>
<thead>
<tr>
<th>Модель</th>
<th>Выходная мощность, Вт</th>
<th>Длина волны, нм</th>
<th>Выходная мощность, 2я гармоника, Вт</th>
<th>Длительность импульса, фс</th>
<th>Энергия в импульсе</th>
<th>Частота повторения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onefive ORIGAMI 10</td>
<td>0,25</td>
<td>1030-1070</td>
<td>0,1</td>
<td>0,075</td>
<td>5 нДж</td>
<td>40-100 МГц</td>
</tr>
<tr>
<td>Onefive ORIGAMI 10HP</td>
<td>3</td>
<td>1030-1055</td>
<td>1,5</td>
<td>100</td>
<td>80 нДж</td>
<td>80 МГц</td>
</tr>
<tr>
<td>Onefive ORIGAMI 10XP</td>
<td>4</td>
<td>1030</td>
<td>2</td>
<td>800</td>
<td>40 мкДж</td>
<td>1 имп. - 1 МГц</td>
</tr>
<tr>
<td>Onefive ORIGAMI 10XPC</td>
<td>100</td>
<td>1030</td>
<td>50</td>
<td>800</td>
<td>500 мкДж</td>
<td>1 имп. - 1 МГц</td>
</tr>
<tr>
<td>Onefive ORIGAMI 15</td>
<td>0,1</td>
<td>1560</td>
<td>0,03</td>
<td>100</td>
<td>1 нДж</td>
<td>40-1,3 Гц</td>
</tr>
<tr>
<td>Onefive ORIGAMI 15HP</td>
<td>2</td>
<td>1560</td>
<td>0,3</td>
<td>300</td>
<td>30 нДж</td>
<td>80 МГц</td>
</tr>
</tbody>
</table>

Пикосекундные лазеры

<table>
<thead>
<tr>
<th>Модель</th>
<th>Выходная мощность, Вт</th>
<th>Длина волны, нм</th>
<th>Выходная мощность, 2я гармоника, Вт</th>
<th>Длительность импульса</th>
<th>Энергия в импульсе</th>
<th>Частота повторения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onefive KATANA 05HP</td>
<td>5</td>
<td>512 – 532</td>
<td>-</td>
<td>30 пс-10 нс</td>
<td>5 мкДж</td>
<td>1 имп. - 100 МГц</td>
</tr>
<tr>
<td>Onefive KATANA 06HP</td>
<td>1</td>
<td>556 – 660</td>
<td>-</td>
<td>200 пс-10 нс</td>
<td>50 нДж</td>
<td>1 имп. - 100 МГц</td>
</tr>
<tr>
<td>Onefive KATANA 08HP</td>
<td>8</td>
<td>775</td>
<td>-</td>
<td>30 пс-10 нс</td>
<td>1 мкДж</td>
<td>1 имп. - 100 МГц</td>
</tr>
<tr>
<td>Onefive GENKI 10</td>
<td>0,15</td>
<td>1030 - 1064</td>
<td>0,075</td>
<td>1 - 45 пс</td>
<td>3 нДж</td>
<td>30-100 МГц</td>
</tr>
<tr>
<td>Onefive GENKI 10HP</td>
<td>20</td>
<td>1030 - 1064</td>
<td>10</td>
<td>4 - 45 пс</td>
<td>50 нДж</td>
<td>30-100 МГц</td>
</tr>
<tr>
<td>Onefive GENKI 10XPC</td>
<td>40</td>
<td>1030</td>
<td>20</td>
<td>10 пс</td>
<td>100 мкДж</td>
<td>1 имп. - 50 МГц</td>
</tr>
<tr>
<td>Onefive GENKI 10XP</td>
<td>100</td>
<td>1064</td>
<td>50</td>
<td>10 пс</td>
<td>300 мкДж</td>
<td>1 имп. - 80 МГц</td>
</tr>
<tr>
<td>Onefive KATANA 10</td>
<td>0,5</td>
<td>1030 - 1064</td>
<td>0,25</td>
<td>30 пс-10 нс</td>
<td>100 нДж</td>
<td>50 кГц - 100 МГц</td>
</tr>
<tr>
<td>Onefive KATANA 10HP</td>
<td>20</td>
<td>1030 - 1064</td>
<td>10</td>
<td>30 пс-10 нс</td>
<td>10 мкДж</td>
<td>50 кГц - 100 МГц</td>
</tr>
<tr>
<td>Onefive KATANA 10XP</td>
<td>6</td>
<td>1064</td>
<td>3</td>
<td>30 пс-10 нс</td>
<td>400 мкДж</td>
<td>1 имп. - 1 МГц</td>
</tr>
<tr>
<td>aeroPULSE PS10</td>
<td>10</td>
<td>1030 / 1064</td>
<td>-</td>
<td>5 пс</td>
<td>0,1 мкДж</td>
<td>80 МГц</td>
</tr>
<tr>
<td>aeroPULSE PS40</td>
<td>40</td>
<td>1030 / 1064</td>
<td>-</td>
<td>20 пс</td>
<td>2 мкДж</td>
<td>20 МГц</td>
</tr>
<tr>
<td>Onefive KATANA 12HP</td>
<td>3</td>
<td>1112 - 1320</td>
<td>1,5</td>
<td>200 пс-10 нс</td>
<td>100 нДж</td>
<td>50 кГц - 100 МГц</td>
</tr>
<tr>
<td>Onefive GENKI 15</td>
<td>0,15</td>
<td>1560</td>
<td>-</td>
<td>1 - 45 пс</td>
<td>3 нДж</td>
<td>30-100 МГц</td>
</tr>
<tr>
<td>Onefive KATANA 15</td>
<td>0,5</td>
<td>1550</td>
<td>-</td>
<td>30 пс-10 нс</td>
<td>100 нДж</td>
<td>50 кГц - 100 МГц</td>
</tr>
<tr>
<td>Onefive KATANA 15HP</td>
<td>14</td>
<td>1550</td>
<td>8</td>
<td>30 пс-10 нс</td>
<td>3 мкДж</td>
<td>50 кГц - 100 МГц</td>
</tr>
</tbody>
</table>
Одночастотные непрерывные лазеры
Одночастотные лазеры с низким уровнем шума с узкой шириной линии в прочном корпусе.

<table>
<thead>
<tr>
<th>Модель</th>
<th>Диапазон</th>
<th>Выходная мощность</th>
<th>Особенности</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koheras BASIK и BASIK MIKRO</td>
<td>1550,12 и 1064 нм (и др.)</td>
<td>до 40 мВт</td>
<td>встроенная модуляция длины волны ГГц и кГц, OEM модули</td>
</tr>
<tr>
<td>Koheras BOOSTIK</td>
<td>1565 нм (и др.)</td>
<td>до 1,3 Вт</td>
<td>качество луча М²<1,05, OEM модули</td>
</tr>
<tr>
<td>Koheras BOOSTIK HIGH POWER</td>
<td>1550,12 и 1064 нм (и др.)</td>
<td>до 15 Вт</td>
<td>регулирование выходной мощности, встроенная модуляция длины волны ГГц и кГц</td>
</tr>
<tr>
<td>Koheras ADJUSTIK</td>
<td></td>
<td>до 40 мВт</td>
<td>ширина линии (кГц) < 0,1, низкий фазовый шум</td>
</tr>
<tr>
<td>Koheras ACOUSTIK</td>
<td>многоканальные малошумящие лазеры: до 16 модулей BASIK, габариты 19°ЗУ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Импульсные лазеры
Ультрабыстрые пикосекундные и фемтосекундные лазеры с дифракционно-ограниченным выходом и узкой шириной линии.

<table>
<thead>
<tr>
<th>Модель</th>
<th>Диапазон</th>
<th>Выходная мощность</th>
<th>Длительность импульса</th>
<th>Особенности</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEROGUIDE</td>
<td>1035 нм</td>
<td>до 40 Вт</td>
<td>5-20 пс</td>
<td>встроенная импульсная модуляция: от одногратного импульса до 40 МГц</td>
</tr>
<tr>
<td>HYLASE</td>
<td>1064 нм</td>
<td>25 Вт</td>
<td><15 пс</td>
<td>частота повторения 80 МГц</td>
</tr>
<tr>
<td>FEMTOPOWER</td>
<td>1064 или 532 нм</td>
<td>до 5 Вт</td>
<td><200 пс</td>
<td>частота повторения от одного импульса до 1 МГц</td>
</tr>
<tr>
<td>HE</td>
<td>1064 или 532 нм</td>
<td>энергия в импульсе до 10 мкДж</td>
<td>от 500 пс до 100 пс</td>
<td>микроструктурированные фотоннокристаллические оптические волокна (hollow fiber)</td>
</tr>
</tbody>
</table>

Модули усиления, волокна с двойной оболочкой и фотоннокристаллические волокна

<table>
<thead>
<tr>
<th>Модули усиления с двойной оболочкой</th>
<th>Микроструктурированные фотоннокристаллические оптические волокна (hollow fiber)</th>
</tr>
</thead>
<tbody>
<tr>
<td>aeroGAIN (модули усиления с иттербиевым волокном: сохранение одномодовой поляризации, высокая стабильность наведения)</td>
<td>AEROGUIDE широкополосные одномодовые патч корды (400-2000 нм в одном волокне, стандартные телекоммуникационные разъемы)</td>
</tr>
</tbody>
</table>

Фемтосекундные лазеры

- Эрбийевые и иттербийевые фемтосекундные волоконные лазеры технология синхронизации мод «figure 9° technology»
- От видимого до среднего ИК диапазона
- Высокая выходная мощность, низкий фазовый шум
- Высокая надежность и воспроизводимость

<table>
<thead>
<tr>
<th>Модель</th>
<th>C-Fiber 780 / 780 HP</th>
<th>ELMO 780 / 780 HP</th>
<th>YLMO-930</th>
<th>YLMO/ HP/2W</th>
<th>Orange / HP / HP 10</th>
<th>C-Fiber / HP</th>
<th>ELMO / HP</th>
<th>Red-Fiber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Центральная длина волны, нм</td>
<td>780 ±10</td>
<td>780 ±10</td>
<td>930 ±10</td>
<td>1030 ±10</td>
<td>1040 ±10</td>
<td>1560 ±20</td>
<td>1560±30</td>
<td>2050</td>
</tr>
<tr>
<td>Средняя мощность, мВт</td>
<td>>100 / >250</td>
<td>>75 / >140</td>
<td>>1000</td>
<td>>5 / >200 / >2000</td>
<td>>100 / >1000 / >10000</td>
<td>>100 / >500</td>
<td>>1 / >330</td>
<td>>100</td>
</tr>
<tr>
<td>Энергия в импульсе, ндж</td>
<td>>1 / >2,5</td>
<td>-</td>
<td>>0,1 / >4 / >20</td>
<td>>1 / >10 / >100</td>
<td>>1 / >5</td>
<td>-</td>
<td>>10</td>
<td></td>
</tr>
<tr>
<td>Длительность импульса, фс</td>
<td><100 (<70)</td>
<td><100</td>
<td><180</td>
<td><150</td>
<td><150 / <150 / <200</td>
<td><90</td>
<td><150 / <90</td>
<td><500</td>
</tr>
<tr>
<td>Частота следования, МГц</td>
<td>100 (50-250)</td>
<td>100 (50-100)</td>
<td>100, фиксировано</td>
<td>50 (50-100)</td>
<td>100 (50-250)</td>
<td>100 (50-250)</td>
<td>100 (50-100)</td>
<td>10</td>
</tr>
</tbody>
</table>

Терагерцовые спектрометры

- Спектрометры с разрешением во времени в традиционных конфигурациях
- Удобное ПО, удаленный контроль
- Новые быстрые методы сканирования OSCAT
- Модули для работы с изображениями

<table>
<thead>
<tr>
<th>Спектрометр</th>
<th>TERA K15</th>
<th>TERA OSCAT (без мех. линии задержки)</th>
<th>TERA SMART (индустр. ный)</th>
<th>TERA ASOPS (высокая скорость)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Спектральный диапазон, ТГц</td>
<td>>5</td>
<td>>3</td>
<td>>5</td>
<td>>3</td>
</tr>
<tr>
<td>Динамический диапазон, дБ</td>
<td>>90</td>
<td>>60</td>
<td>>90</td>
<td>>60</td>
</tr>
<tr>
<td>Сканируемый временной диапазон, пс</td>
<td>>850</td>
<td>до 4 нс</td>
<td>>850</td>
<td>10 нс</td>
</tr>
<tr>
<td>Разрешение по частоте, ГГц</td>
<td><1,2</td>
<td><3</td>
<td><1,2</td>
<td>>600 Гц частота дискретизации</td>
</tr>
</tbody>
</table>

Menlo Systems — ведущий разработчик и мировой поставщик приборов для высокоточных измерений. Компания специализируется на производстве волоконных фемтосекундных лазеров, терагерцовых систем, систем детектирования и синхронизации. С 2001 года отделилась от Института квантовой оптики им. Макса Планка c целью коммерциализации технологий оптических измерений и увеличения их доступности для новых областей применения.
ВОЛОКНОННЫЕ ЛАЗЕРЫ РОССИЙСКОГО ПРОИЗВОДСТВА

Волоконные лазеры для научных исследований и промышленности от партнеров компании «ЛПС».
Версии с узкой линией и низким уровнем шума, высокой когерентностью, высокомощные версии, версии от УФ до среднего ИК диапазона

Зеленые лазеры
• Celsus-SF-515 - непрерывный одноточечный волоконный лазер 515 нм (ширина линии <200 кГц)
• Celsus-NL-540 – зеленый непрерывный волоконный лазер лазер 532 (515-561) нм (ширина линии <0,1 нм)
• Varius-NL-532T – зеленый непрерывный перестраиваемый лазер 525-540 (540-561) нм (ширина линии <0,1 нм)

УФ лазеры
• Magius-SF-257 - непрерывный одноточечный лазер с узкой шириной линии УФ 257,5 нм (выходная мощность до 100 мВт, ширина линии <100 кГц)

Эрбиевые лазеры 1535-1600 нм
• SF1560L - непрерывный одноточечный волоконный лазер 1560 (1550) нм (ширина линии <1 кГц)
• SF 1560X - непрерывный одноточечный волоконный лазер 1560 (1550) нм (ширина линии <1 кГц), выходная мощность до 10 Вт
• Erbius-NL-1550X – высокомощный непрерывный эрбиевый лазер 1535-1580 нм (выходная мощность до 30 Вт, ширина линии <0,3 нм)
• Varius-NL-15xx-T - непрерывный перестраиваемый волоконный лазер 1535-1580 нм
• FL - Er – 5 – 4 Вт, полоса 0,1-0,2 нм
• SFLD-1550 – 100кГц полоса, 1 мВт – выходная мощность
• FOLR-1555 – резонатор волоконного лазера, 1560нм, многомодовая накачка, эффективность в нормальных условиях более 15%

ИК лазеры 770-790 нм
• Celsus-SF-780 - непрерывный одноточечный волоконный лазер 780 нм (ширина линии <1кГц/10 кГц)
• Celsus-NL-780 – инфракрасный волоконный непрерывный лазер 780 (770-790) нм (ширина линии <0,1 нм)
• Celsus-NL-780T T - непрерывный перестраиваемый волоконный лазер 770-790 нм

Иттербиевые лазеры 1030-1100 нм
• Irybus-SF-1030L - непрерывный одноточечный волоконный лазер 1030 (1093) нм (ширина линии <100 кГц)
• Irybus-SF-1030X - непрерывный одноточечный волоконный лазер 1030 (1093) нм (ширина линии <100 кГц), выходная мощность до 15 Вт
• Irybus-NL-1070X – высокомощный непрерывный иттербиевый лазер 1030-1100 нм (выходная мощность до 50 Вт, ширина линии <0,3 нм)
• Varius-NL-10xx-T - непрерывный перестраиваемый волоконный лазер 1030-1110 нм
• FL - Yb – 10 – непрерывный одномодовый лазер, 10 Вт, ширина линии <0,3 – 0,7нм
• FOLR-1064-WTR – резонатор волоконного лазера, многомодовая накачка, эффективность в нормальных условиях более 60%

Тулиевые лазеры 1,9-2 мкм
• FL - Tm – 3 – тулиевый лазер, 1975 нм, 4 Вт – выходная мощность, полоса 0,3-0,7нм, вывоед – волоконный торец под сварку
• FOLR-1970 – резонатор волоконного лазера, 1975нм, многомодовая накачка, эффективность в нормальных условиях более 15%

82

www.lenlasers.ru
ВЫСОКОМОЩНЫЕ ВОЛОКОННЫЕ ЛАЗЕРЫ

ОСНОВНАЯ ПРОДУКЦИЯ
► Волоконные лазеры высокой мощности до 15 кВт
► Волоконные одномодовые лазеры до 2200 Вт
► Импульсные волоконные лазеры от 10 Вт до 100 Вт
► Квазинепрерывные волоконные лазеры до 800 Вт

ОБЛАСТИ ПРИМЕНЕНИЯ
Волоконные лазеры широко используются для маркировки, точного сверления и гравировки на неметаллических поверхностях и на металлах с высоким отражением, таких как золото, серебро, алюминий, нержавеющая сталь и т.д.
► Маркировка
► Резка
► Сварка
► Термообработка
► Наплавка
► Аддитивные технологии
► Подстройка резисторов
► Очистка поверхности
► ПО травление
► Сверление
► Точная резка

ПРЕИМУЩЕСТВА ЛАЗЕРОВ RAYCUS
► Высокая мощность
► Собственный производственный цикл
► Стабильность работы
► Низкая стоимость

Все ключевые компоненты импульсных волоконных лазеров Raycus создаются на заводе производителя, что позволяет повысить надежность и качество продукта и достичь новейших технологических стандартов.

ОСОБЕННОСТИ
► Контроль формы импульса
► Высокая энергия в импульсе
► Короткое время подстройки импульса
► Высокая стабильность выходной мощности
► Доказанная надежность
► Эксплуатация без обслуживания

Wuhan Raycus Fiber Laser Technologies Co Ltd (Raycus) – ведущий производитель импульсных и непрерывных волоконных лазеров высокой мощности для индустриальных применений.
Современное лазерное оборудование

Компания «ЛЛС» предлагает готовые решения на базе ультрафиолетовых лазеров для вас и вашей компании от производителя HGTECH.

- Мощность до 18 Вт
- Скорость до 500 см/с
- Немецкая оптика и сканирующая система
- Для использования в конвейерной линии, производстве, офисе

Оборудование представлено на выставке Фотоника-2019 стенд № 73В40

А так же лазерные источники компании Huagay

- Наносекундные 355нм 3,5,12,18 Вт
- Наносекундные 532нм 10,20,35 Вт
- Пикосекундные 532нм 4,15 Вт
- Пикосекундные 1064нм 10,30,50 Вт
- Фемтосекундные 1035нм 2,5,10,20,40 Вт
ИЗМЕРИТЕЛЬНОЕ ОБОРУДОВАНИЕ

- Волоконно – оптическое испытательное оборудование
- Оборудование для тестирования активных компонентов
- Системы спектроскопии
- Системы для поляризационных измерений
- Квантовые коммуникации
- Оборудование для измерения параметров излучения
ВОЛОКОННО-ОПТИЧЕСКОЕ ИСПЫТАТЕЛЬНОЕ ОБОРУДОВАНИЕ

Модульная платформа для тестирования оптических и телекоммуникационных систем FTB

Семейство EXFO FTB обеспечивает непревзойденную эффективность благодаря интегрированным приложениям, встроенными инструментами тестирования, а также гибким вариантам подключения модулей, которые упрощают работу с оборудованием в лаборатории, так и в полевых условиях.

<table>
<thead>
<tr>
<th>ПРИМЕНЕНИЯ</th>
<th>ОПТИЧЕСКИЕ ТЕСТОВЫЕ МОДУЛИ:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Характеризация оптоволокна</td>
<td>• Анализатор канала</td>
</tr>
<tr>
<td>• FTTH тестирование</td>
<td>• Оптический анализатор спектра</td>
</tr>
<tr>
<td>• Тестирование мобильного и Ethernet трафика</td>
<td>• Оптический рефлектометр</td>
</tr>
<tr>
<td>• CWDM / DWDM измерения</td>
<td>• Оптический рефлектометр CWDM/DWDM</td>
</tr>
<tr>
<td>• Анализ PMD</td>
<td>• Оптический измеритель потерь</td>
</tr>
<tr>
<td>• 40G и 100G тестирование</td>
<td>• Анализатор дисперсии</td>
</tr>
</tbody>
</table>

Тестер пассивных оптических компонентов CT440

Серия компактных платформ CT440 позволяет быстро и точно тестировать пассивные оптические компоненты (например, MUX / DEMUX, фильтры, разветвители, ROADM, WSS).

КЛЮЧЕВЫЕ ВОЗМОЖНОСТИ

- Быстрое измерение передаточной функции
- Диапазон длин волн от 1240 до 1680 нм
- Опции PM и PDL
- Разрешение по длине волн от 1 до 250 пм
- Погрешность длины волны ± 5 пм
- Динамический диапазон 65 дБ

Мощные перестраиваемые лазеры серии T100S-HP

Серия перестраиваемых лазеров высокой мощности, которая сочетает отличные характеристики и высокую стабильность. Серия состоит из 6 лазеров, охватывающих диапазон длин волн от 1240 до 1680 нм.

КЛЮЧЕВЫЕ ВОЗМОЖНОСТИ:

- Мощность +8 дБм
- Мощность +10 дБм для моделей Essential
- Динамический диапазон выше 90 дБ
- Диапазон настройки до 200 нм
- Точность установки длины волны ±20 пм

EXFO — производит высокотехнологичные продукты для тестирования пассивных и активных оптических компонентов, и готовых сетей. На сегодняшний день больше 30 лет опыта в сфере связи дает организации большие преимущества. Штат компании насчитывает около 1800 человек в 25 странах мира, оказывающих поддержку более чем 2000 клиентам во всем мире.
Тестовая платформа для пассивных компонентов CTP10
Модульная измерительная платформа CTP10 позволяет выполнять измерения вносимых потерь и возвратных потерь за один проход с беспрецедентным динамическим диапазоном, скоростью и разрешением. Она является идеальным инструментом для характеристики компонентов с большим номером порта, используемых в сетях DWDM и приложениях с фотонными интегральными схемами (PIC).

Ключевые возможности:
- Самое быстрое в отрасли быстрое измерение вносимых потерь (IL) и обратных потерь (RL)
- Современная электроника обеспечивает полную динамическую характеристику за один проход
- Содержит 10 модулей с возможностью горячей замены для тестирования компонентов с 50 оптическими выходами
- Совместима с перестраиваемыми лазерами со скоростями перестройки выше 500 нм/с

Анализатор оптической модуляции PSO-200
Компания EXFO предлагает решения по анализу оптической модуляции, которое позволяет полностью характеризовать случайные или повторяющиеся цифровые сигналы со скоростью до 100 Гбит/с.

Ключевые возможности:
- Диапазон длины волны от 1530 до 1565 нм
- Скорость передачи 40 и 100 Гбит/с
- Поддержка форматов модуляции BPSK, QPSK, DQPSK, 16-QAM, DP-16-QAM и др.
- Измерения Диаграммы созвездия и глазовой диаграммы
- Измерение вектора ошибки (EVM)
- Измерение битовой ошибки (BER)
- Возможность использования цифровых фильтров

Оптический анализатор спектра OSA20
Самый быстрый прибор на основе дифракционной решетки, работающий от 1250 до 1700 нм. Обеспечивает быстрое, точное сканирование в широком динамическом диапазоне.

Ключевые возможности:
- Диапазон длины волны от 1250 до 1700 нм
- Разрешение 20 нм
- Скорость развертки до 2000 нм/с
- Точность определения длины волны: ±10 нм для длина волны от 1500 до 1640 нм и ±25 нм для длина волны от 1250 до 1700 нм
- Точность измерения уровня мощности ±0.4 дБ
- Встроенный источник калибровки

Серия перестраиваемых фильтров с фиксированной и регулируемой полосой пропускания

<table>
<thead>
<tr>
<th></th>
<th>XTA-50</th>
<th>XFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Диапазон</td>
<td>Диапазон от 1260 до 1650 нм, шаг 1 пм</td>
<td>Диапазон от 1450 до 1650 нм, шаг 1 пм</td>
</tr>
<tr>
<td>Точность</td>
<td>Точность длины волны ± 30 пм</td>
<td>Точность длины волны ± 30 пм</td>
</tr>
<tr>
<td>Входная мощность</td>
<td>Макс. входная мощность ±30 дБ</td>
<td>Вносимые потери 5 дБ</td>
</tr>
<tr>
<td>Полоса пропускания</td>
<td>Регулируемая полоса пропускания</td>
<td>Фиксированная полоса, четкие спектральные границы</td>
</tr>
<tr>
<td>Селективность</td>
<td>Высокий уровень селективности</td>
<td>Поляризационные потери ±0.2 дБ</td>
</tr>
</tbody>
</table>
Решения для тестирования электрооптических и оптоэлектронных компонентов

- Диапазон частот от 10 МГц до 67 ГГц
- Оптический диапазон от 1290 до 1610 нм
- Уровень шума < -59 дБ для O/E измерений; Уровень шума < -55 дБ для E/O измерений
- Измерение S-параметров O/E ресиверов, E/O трансмиттеров, O/O оптических и E/E электронных компонентов, RoF компонентов (Radio over Fiber) и систем когерентной передачи сигналов
- Измерение компонентов на пластине
- Встроенный измеритель мощности для измерения параметров передатчика
- Внешний лазерный источник для измерения параметров приемника

Решения для тестирования систем когерентной оптической передачи

Для тестирования систем когерентной передачи сигналов компания Keysight предлагает широкий выбор решений и инструментов для генерирования и анализа сложных модулированных оптических сигналов. Для синтеза сложных модулированных сигналов обычно используются многоканальные генераторы сигналов произвольной формы. Анализаторы оптической модуляции позволяют получить подробную информацию о сложных модулированных оптических сигналах на физическом уровне с целью определения качества сигнала или оценки компонентов, предназначенных для IQ модуляции или демодуляции.
Решения для анализа цифровой модуляции, временных характеристик и коэффициента ошибок

Решения компании Keysight для тестирования временных характеристик и коэффициента битовых ошибок обеспечивают высокую точность и эффективность верификации, определения параметров, а также производственных испытаний и тестирования на соответствие требованиям стандартов высокоскоростных коммуникационных портов современных специализированных интегральных микросхем, компонентов, модулей и линейных плат в процессе разработки и производства полупроводниковых устройств, вычислительной техники, систем хранения данных и средств связи.

Оциллграf серий Infiniium UXR с полосой пропускания до 110 ГГц
Обеспечение лучшей в мире производительности благодаря 10 разрядному АЦП и высокому значению эффективного числа разрядов (ENOB)

Широкополосный осциллограф DCA-X
Полоса пропускания более 110 ГГц, уровень джиттера 100 фс, уровень шума 275 мкВ. Широкий выбор сменных модулей для анализа электрических и оптических сигналов, параметров отражения и передачи во временной области и S-параметров

Высоко производительный тестер коэффициента битовых ошибок (BERT) серии M8000
Обеспечение высокой скорости и точности получения данных благодаря поддержке стандартов PAM-4 и NRZ. Скорость передачи данных до 64 ГБод/с (соответствует 128 Гбит/с) позволяет охватить все разновидности стандартов 200 и 400 ГбE

Стробоскопический осциллограф серии DCA-M
Высокая точность анализа сигналов с большой скоростью передачи данных благодаря величине джиттера менее 200 фс

Модуль восстановления тактового сигнала N1078A
Восстановление тактовой частоты оптических и электрических сигналов NRZ и PAM-4, обеспечивающих непрерывную передачу данных с символьной скоростью от 125 МБод до 64 ГБод

Решения для тестирования пассивных оптических компонентов

- Измерители оптической мощности
 Источники лазерного излучения: с внешним резонатором (ECL), с распределенной обратной связью (DFB), Фабри-Перо
- Оптические аттенюаторы
- Многоволновые измерители длины волны:
- Решения для измерения и контроля поляризации
- Анализатор оптических компонентов, анализатор поляризации, контроллер поляризации, анализатор PER, синтезатор поляризации, скремблер

Keysight Technologies – поставщик контрольно-измерительного оборудования, который более 75 лет предлагает технические решения для всего цикла создания оптических телекоммуникационных сетей – от компонентов до центров обработки данных и телекоммуникаций, охватывая такие новейшие технологии, как кремниевая фотоника и когерентная передача сигналов.

www.lenlasers.ru
Специальные измерения: анализ импульсов, PDV и прочее

Модульные решения в формате PXIe и MTP (Modular Test Platform)

Компания Coherent Solutions развивает направление модульных приборов на платформах PXIe. Этот подход позволяет комбинировать оборудование под конкретные задачи, а универсальность платформы PXIe предполагает неограниченные возможности по расширению уже готовых систем, в частности RF и MW решений.

Варианты модульных приборов на платформе PXIe
- Перестраиваемый лазер С и L диапазона
- Аттенюатор, диапазон ослабления от 0 до 40 дБ, разрешение 0.01 дБ
- Коммутатор 1х1, 1х4, 1х16, 2х2, 8х8, 16х16
- Измеритель падающей мощности до +10 дБм
- Оптоэлектронный преобразователь, полоса пропускания от 9 до 50 ГГц
- Модуль измерения PDV (Photonic Doppler Velocimeter)
- Оптический анализатор спектра

Решение для измерения систем допплеровской велосиметрии (PDV)

Решения для тестирования когерентных сигналов серии IQ
- Перестраивающий лазерный источник IQTLS
 Узкая ширина линии 100 кГц
- Автоматический контроллер смещения IQABC
 Поддержка любых видов модуляции
 Поддержка независимого управления I и Q смещения
- Передатчик когерентных модулированных сигналов IQTransmitter
 Частотный диапазон 40, 26 или 11 ГГц
 Поддержка скорости передачи данных до 64 ГБод

Оптический анализатор импульсов IQFROG
- Диапазон 1000 - 1100 нм для IQFROG 1.0 мкм
- Диапазон 1520 - 1610 нм для IQFROG 1.5 мкм
- Измерение интенсивности и фазы для импульсов длительностью от 300 фс до 50 пс
- Автокорреляционные измерения до 50 пс

Область применения
- Тестирование лазеров, легированных Эрбием (EDFL)
- Измерение параметров лазерных импульсов
- Характеризация высокоскоростных линий передачи данных
- Измерение оптоэлектронных компонентов

Coherent Solutions – динамично развивающаяся компания, основанная в 2001 году инженерами и разработчиками, в настоящий момент стала одним из мировых лидеров по производству контрольно-измерительного оборудования для высокоскоростной оптической связи.
Поляризационный скрэбблер /преобразователь EPI1000
- Скорость скрэбблинга 20 Мрад/с (без ограничений по длительности работы)
- Период тактовых импульсов до 20 нс
- Спектральный диапазон C, L и S, также 1310 нм
- Вносимые потери не более 3 дБ

Контроллер поляризации /демультиплексор EPC1000
- Скорость контроля 40, 60 и 100 крад/с (без ограничений по длительности работы)
- Отслеживание как одной (CW), так и двух поляризаций (DOPSK, QAM, DPSK и др.)
- Спектральный диапазон C, L и S, также 1310 нм

Лабораторный перестраиваемый лазер LU1000
- До 4 источников в одном приборе
- Возможность главной или дискретной перестройки
- Выходная мощность до 18 дБм
- Спектральный диапазон C и L
- Полная поддержка EPS1000 и PM1000

Поляриметр PM1000
- Частота дискретизации 100 МГц
- Память рассчитана на 64 Мвыб
- Спектральный диапазон C, L, S, E и O
- Аналоговая полоса 30 МГц
- Отображение сферы Пуанкарэ в реальном времени

Поляризационный скрэбблер /преобразователь EPI1000
- Скорость скрэбблинга 20 Мрад/с (без ограничений по длительности работы)
- Период тактовых импульсов до 20 нс
- Спектральный диапазон C, L и S, также 1310 нм
- Вносимые потери не более 3 дБ

Контроллер поляризации /демультиплексор EPC1000
- Скорость контроля 40, 60 и 100 крад/с (без ограничений по длительности работы)
- Отслеживание как одной (CW), так и двух поляризаций (DOPSK, QAM, DPSK и др.)
- Спектральный диапазон C, L и S, также 1310 нм

Лабораторный перестраиваемый лазер LU1000
- До 4 источников в одном приборе
- Возможность главной или дискретной перестройки
- Выходная мощность до 18 дБм
- Спектральный диапазон C и L
- Полная поддержка EPS1000 и PM1000

Поляриметр PM1000
- Частота дискретизации 100 МГц
- Память рассчитана на 64 Мвыб
- Спектральный диапазон C, L, S, E и O
- Аналоговая полоса 30 МГц
- Отображение сферы Пуанкарэ в реальном времени

Комбинированные приборы PMS1000 и EPX1000
Компания Novoptel также предлагает комбинированные приборы, которые, в сочетании с программным обеспечением, позволяют проводить поляризационные измерения наиболее точно.

СТАНДАРТНЫЕ КОМБИНАЦИИ ПРИБОРОВ
- EPX1000 = EPC1000 + EPS1000
- PMS1000 = PM1000 + EPS1000
- Любая пользовательская комбинация

ОСНОВНЫЕ ИЗМЕРЯЕМЫЕ ПАРАМЕТРЫ
- Состояние поляризации (SOP)
- Степень поляризации (DOP)
- Поляризационно-зависимые потери (PDL)
- Поляризационная модовая дисперсия (PMD)
- Матрица Мюлера, Джонса, Мюлера-Джонса
- Собственная мода
- Запаздывание по фазе
- Средние потери

Novoptel
Novoptel – производитель оборудования для высокоточной и сверхскоростной поляриметрии. Команда разработчиков в течение 20 лет отрабатывала и доводила до совершенства свои технологии в университете Падерборна.

www.lenlasers.ru
Оптические анализаторы спектра высокого разрешения серии AP201X, AP206X, AP207X, AP208X

Опираясь на интерферометрический принцип, оптический анализатор спектра со сверхвысоким разрешением APEX Technologies может достичь разрешения в 500 раз лучше, чем оптический анализатор спектра с монохроматором.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ:
- Разрешение от 5 МГц до 250 ГГц
- Спектральный диапазон С, L и O
- Точность измерения длины волны ±2 пм
- Широкий динамический диапазон 78 дБ
- Встроенный перестраиваемый лазерный источник (DFB)
- Следящий генератор

КЛЮЧЕВЫЕ ОСОБЕННОСТИ:
- Измерения оптического соотношения сигнал шум (OSNR)
- 2 канала, каждый на одну поляризацию
- Измерение оптических компонентов

Комплексные оптические анализаторы спектра серии AP268X

APEX Technologies предлагает комбинированный прибор для измерений как в спектральной области, так и во временной области, который объединяет в себе преимущества оптического анализатора спектра и анализатора оптической модуляции.

ОДНО УСТРОЙСТВО ВМЕСТО ШЕСТИ:
- Анализатор спектра
- Анализатор спектра
- Анализатор оптической модуляции
- Перестраиваемый лазер
- Измеритель мощности
- Измеритель длины волны

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ:
- Разрешение от 5 МГц до 250 ГГц
- Спектральный диапазон С, L и О
- Точность измерения длины волны ±2 пм
- Широкий динамический диапазон 83 дБ
- Встроенный перестраиваемый лазерный источник (ECL)
- Следящий генератор

КЛЮЧЕВЫЕ ОСОБЕННОСТИ:
- Без ограничения скорости передачи данных
- Без ограничения формата модуляции (BPSK, DPSK, 16QAM, 64QAM и др.)
- Измерение фазы, чирпа, интенсивности во времени, диаграммы созвездие и глазовой диаграммы, хроматической дисперсии, поляризации
- Характеризация модуляторов с возможностью восстановления тактового сигнала

APEX Technologies – производитель высокоточных оптических анализаторов спектра и другого лабораторного оборудования с опытом работы более 15 лет. Компания была основана в 1998 году в партнерстве с France Telecom Scientists Group.
ТГЦ, ОПТИЧЕСКИЕ ЧАСТОТНЫЕ ГРЕБЕНКИ

ТЕРАГЕРЦОВЫЕ АНТЕННЫ И КОМПОНЕНТЫ

Терагерцевые фотопроводящие антенны
(800 нм и 1500 нм)
Обеспечивают генерацию излучения в диапазоне до 4,5 ТГц
• Соотношение сигнал-шум >80 дБ
• Мощность ТГц сигнала до ~ 100 мкВт

Терагерцовая оптика
Оптический диапазон прозрачности 780 - 1550 нм

Плоскозвуковые линзы
• диаметр 37 мм
• эффективное фокусное расстояние 54 мм

Асферические линзы
• диаметр 38 мм
• эффективное фокусное расстояние 100, 200 мм

Микроджоульные лазеры
BlueCut – индустриальные мкДж фемтосекундные лазеры для лазерной резки и микрообработки материалов.
• Длина волны 515, 1030 нм (доступна OEM версия)
• Выходная мощность >10 нт, энергия в импульсе > 10 мкДж
• Длительность импульса 400 фс
• Частота повторения до 10 МГц
• Синхронизации сканера и движения платформы через интерфейс TTL

Оптические частотные гребенки (комбы)
Системы оптических частотных гребенок (OFC) являются технологическим прорывом для высокоточных измерений. Низкий уровень фазового шума, генерация стабильного суперконтинуума, полная готовность к функционированию, точность и надежность. Широкий диапазон длин волн, системы адаптированные под конкретные применения.
• 500-2100 нм (FC1500-250-WG, FC1500-250-ULN)
• 530-1100 нм (FC1000-250, FC800)
• 3100-3400, 6500-7800 (Mid-IR Comb)
• Компактная система SmartComb и уникальная система AstroComb

Системы стабилизации, метрологические системы, ASOPS и CEP
• ASOPS (асинхронная оптическая выборка) - высокоскоростное сканирование с задержкой по времени свыше нескольких нс без использования механической линии задержки
• CEP - системы для стабилизации фазы огибающей несущей световых импульсов малого числа колебаний в генераторах и усилителях
• Стабильные непрерывные лазеры, опорные RF источники (ORS, GPS)
 – ORS – стабильные непрерывные лазеры
 – GPS – опорные RF источники
• BDU – модули регистрации биений

Фотодетекторы
Фотодетекторы высокой чувствительности (FS: свободное пространство, FC: волокно) для видимого и ИК диапазонов 400-1000 и 950-1650 нм.
• Лавинные фотоприемники APD210, APD310
 – высокая чувствительность для слабых сигналов
• PIN фотодетекторы FPD310, FPD510, FPD610
 – высокий коэффициент усиления на частотах до 1-1500, 250, 600 МГц, соответственно

Menlo Systems – ведущий разработчик и мировой поставщик приборов для высокоточных измерений. Компания специализируется на производстве волоконных фемтосекундных лазеров, терагерцовых систем, систем детектирования и синхронизации.

www.lenlasers.ru
ID Quantique — компания направлена на обеспечение инновационных и экономически выгодных решений, которые позволяют эффективно использовать возможности квантовой фотоники. ID Quantique является лидером в области сетевого шифрования, приборов для научных исследований и генераторов случайных чисел. Диапазон применения продукции включает в себя такие области, как квантовая оптика, квантовая криптография, спектроскопия, измерения люминесценции, изготовление безопасных дальномеров и многое другое.

USB устройство – поток случайных чисел

ОЭМ компонент – поток случайных чисел 4 Мбит/с

PCI и PCI Express (PCIe) панели – поток случайных чисел 4 Мбит/с и 16 Мбит/с

Quantis Appliance с сертифицированным внутренним QRNG для работы в сети – поток случайных чисел 16 Мбит/с

ID100
- 350-900 нм
- 40 пс разрешение по времени
- 35 % квантовая эффективность

ID110
- 350-900 нм
- 200 пс разрешение по времени
- 25 % квантовая эффективность

ID120
- 350-1000 нм
- 80 % квантовая эффективность
- 500 мкм активная площадь

ID150
- 350-900 нм
- Линейная матрица 1x8
ИНФРАКРАСНЫЙ ДИАПАЗОН

(на основе лавинных фотодиодов InGaAs/InP или на сверхпроводящих нанопроволках)

ID230
- 900-1700 нм
- 100 пс разрешение по времени
- 25 % квантовая эффективность

ID210
- 900-1700 нм
- 100 МГц
- 30 % квантовая эффективность

D220
- 900-1700 нм
- 250 пс разрешение по времени
- 20 % квантовая эффективность

ID281
- 400-2500 нм
- 15 МГц
- 80 % квантовая эффективность

ID900
Контроллер времени
- до 64 каналов
- Счетчики 1 Гц
- Быстрая передача данных (100 МГц/с)

ID300
Источник излучения
- DFB или Фабри Перо лазер
- 1310 или 1550 нм
- 300 пс длина импульса

ID900
Контроллер времени
- до 64 каналов
- Счетчики 1 Гц
- Быстрая передача данных (100 МГц/с)

ID300
Источник излучения
- DFB или Фабри Перо лазер
- 1310 или 1550 нм
- 300 пс длина импульса

Платформа для распространения квантовых ключей
- Передача секретных данных до 100 км

ПРИМЕР ПРИМЕНЕНИЯ: ИСТОЧНИК ОДИНОКИХ ФОТОНОВ

ID350
Источник парных фотонов

ID220
Несинхронизированный детектор

ID210
Управляемый детектор

ID800
Время-цифровой преобразователь
Модульные компактные спектрометры и аксессуары

Спектрометры имеют модульную структуру, состоящую из следующих основных элементов: входная щель, фильтры, дифракционная решетка, детектор (кренниевый, ПЗС-матрица, КМОП-матрицы, InGaAs), оптика.

В зависимости от требуемого диапазона длин волн, разрешения и чувствительности применяются те или иные типы перечисленных компонентов. Возможно подобрать подходящий спектрометр из уже готовых моделей, а также выбрать custom-версию.

СЕРИИ СПЕКТРОМЕТРОВ:
- STS SERIES – самые компактные модульные спектрометры, 40x42x24 мм, UV (190-650 нм), ВД (350-800 нм) и ИК (650-1100 нм)
- Спектрометры общего назначения
 — OCEAN HDX – оптика высокой четкости в малогабаритном корпусе, УФ-ВД (200-800 нм), ВД-ИК (350-925 нм)
 — OCEAN FX - быстрая скорость сбора данных, УФ-ВД (200-850 нм), ВД-ИК (350-1000 нм) и расширенного диапазона (200-1025 нм)
 — FLAME - высокая термическая стабильность, смешные щели, различные варианты диапазонов длин волн
 — USB SERIES - общие применения УФ-ВД и УФ-ИК
- Специальные назначения (повышенная чувствительность, разрешение, диапазон длин волн)
 — HR SERIES, TORUS, MAYA2000 PRO
- Спектрометры с наилучшими показателями производительности (высокое разрешение в ближнем ИК диапазоне, низкий шум, сверхвысокая чувствительность)
 — QE PRO SERIES, NIRQUEST SERIES, VENTANA SERIES
- Спектрометры для рамановской спектроскопии (RAMAN)
- Спектрометр среднего ИК диапазона Ocean MZ5 для быстрого и точного анализа жидкостей в среднем ИК диапазоне (5,5-11 мкм)

Источники света и аксессуары
- Калибровочные источники, эталоны
- Источники белого света, рамановские лазеры
- Аксессуары для проб
- Волокна, патч-корды

Программное обеспечение

Компания Ocean Optics специализируется на следующих уровнях интеграции спектрометров:
- Для лабораторного использования
- Для OEM применений
- Подсистемы: спектрометры со встроенными оптомеханическими узлами и электроникой для индустриальных приборов
- Готовые измерительные решения для индустриальных применений

Ocean Optics – ведущий производитель в области спектроскопии. Помимо широкого ассортимента спектроскопов, компания предлагает целый ряд как отдельных компонентов, так и комплексных решений для оптических измерительных систем для индустрии, легкой, пищевой промышленности, сельского хозяйства и различных применений, где требуется анализ состава и качества веществ.
ОБРАБОТКА МАТЕРИАЛОВ

ОБОРУДОВАНИЕ
- Лазерная маркировка и гравировка
- Лазерная резка
- Лазерная сварка и аддитивные технологии
- Микромашининг

УСЛУГИ
- Комплексные поставки

СТАТЬЯ
- Преимущества лазеров MOPA над лазерами Q-switch

www.lenlasers.ru
Комплексные поставки

Компания «Ленинградские Лазерные Системы» предлагает различные решения для лазерной микро- и макро- обработки материалов. Мы осуществляем как комплексные поставки готовых решений, так и компонентов, для самостоятельной сборки установок лазерной обработки.

Услуги

- Подбор комплексов для лазерной маркировки, гравировки, резки и сварки
- Поставка стандартных и нестандартных решений под любые задачи
- Гарантийное и постгарантийное обслуживание лазерных комплексов
- Подготовка технологии лазерной обработки для вашей задачи
- Модернизация и ремонт комплексов лазерной обработки, лазерных источников
- Обучение персонала
- Доставка оборудования по России и странам СНГ
- Техническая поддержка

Основная продукция

- Станки для лазерной маркировки и гравировки
- Станки для лазерной резки
- Станки для лазерной сварки
- Лазерные головки для сварки и резки
- Сканирующие системы гальванометрического типа
- F-Theta линзы
- Лазерные источники от 3 Вт до 15 кВт
- Системы ЧПУ
- Чиллеры
- Запасные части
- Расходные материалы
ЛАЗЕРНАЯ МАРКИРОВКА

Компания «Ленинградские Лазерные Системы» поставляет как компонентную базу, так и готовые решения для лазерной маркировки.

Мы обеспечиваем доставку до клиента, установку, пуско-наладку, обучение, гарантийное и пост-гарантийное обслуживание готовых станков и компонентной базы. Все оборудование полностью русифицировано и готово для работы по российским стандартам.

Мы предоставляем бесплатную маркировку ваших образцов для демонстрации результата.

Отдельно стоящее рабочее место Настольный вариант Встраиваемая установка Переносной вариант

ОТДЕЛЬНО СТОЯЩЕЕ РАБОЧЕЕ МЕСТО

Оптимальный вариант для производства среднего масштаба, сочетающий все необходимые элементы в одном корпусе. Позволяет маркировать все виды металлов, пластиков, дерева, стекла, резины.

ИСТОЧНИКИ

Ф-ПЕТА ЛИНЗА

СКАНИРУЮЩЕЕ УСТРОЙСТВО

СИСТЕМА УПРАВЛЕНИЯ

ВРАЩАТЕЛЬ

МЕХАНИКА

IPG Photonics

Raycus

Huaray

JPT
ЛАЗЕРНАЯ РЕЗКА

Компания «Ленинградские Лазерные Системы» поставляет как готовые станки под раз-личные задачи, так и компонентную базу для них. Если у вас уже есть ЧПУ станок и вы хотите переоборудовать его на лазерную резку — мы всегда рады помочь. В наш штат входят инженеры и научные сотрудники, способные решить задачу любой сложности.

Резка листового материала Резка сложного профиля Резка труб Прецизионная резка

СТАНОК ЛАЗЕРНОЙ РЕЗКИ

Станок может оснащаться рабочими столами различных размеров, защитным корпусом, сменными столами и многим другим, в зависимости от пожеланий заказчика.

Мощность: от 0,5 до 12 кВт
Размеры столов: от 0,6 до 6 м
Ускорение: до 2G
Скорость: до 140 м/мин
Толщина материала: до 40 мм
ЛАЗЕРНАЯ СВАРКА И АДДИТИВНЫЕ ТЕХНОЛОГИИ

Компания HGTECH предлагает готовые решения для лазерной сварки/закалки/наплавки в мелкосерийном и крупносерийном производстве. Вы получаете полностью готовое решение для выполнения задач любой сложности.

Оборудование оснащается лучшими комплектующими и проходит множество этапов проверки. Весь софт разрабатывается профессиональными инженерами и проходит множество этапов отработки. Это позволяет гарантировать стабильную работу на протяжении многих лет.

Компания «Ленинградские Лазерные системы» представляет интересы компании HGTECH на территории России, а также помогает разработать схемы реализации проектов и поставляет комплектующие для самостоятельной сборки установок для лазерной сварки/закалка/наплавки и аддитивных технологий.

Головы для лазерной сварки компании WSX
- От 1 кВт до 6 кВт
- С возможностью подключения камеры CCD, пирометров и других датчиков.
- С гальванометрическим сканирующим устройством

Волоконные лазерные излучатели фирмы Raycus, IPG
- От 300 Вт до 12 кВт
- Диаметр волокна от 25 до 200 мкм
- Индивидуальный подбор длины волокна
- Не требует обслуживания

Системы ЧПУ для управления 3 и более осями

Чиллеры компании S&A

Расходные материалы и различные комплектующие
Компания «Ленинградские Лазерные Системы» предлагает моторизированные позиционеры STANDA на основе прямого привода для решения задач точного позиционирования. Производитель STANDA предоставляет возможности для создания систем микромашининга: высокоточную механику, виброизолационные системы, программное обеспечение.

8MTL 120XY Планарный позиционер
- Диапазон перемещения 120 x 120 мм
- Разрешающая способность энкодера до 1 нм
- Двусторонняя повторяемость (СК) ±0.10 μм
- Ортогональность ≤5 arcsec
- Нагрузка до 30 кг
- Отсутствие люфта
- Высокая скорость > 1000 мм/с и ускорение > 20000 мм/с²

Контроллеры 8SMC5 с интегрированным драйвером
- Управления систем с шаговыми, DC, BLDC моторами
- TTL-синхронизация
- Компенсация потери шага и люфта
- XILAB программра для управления и поддержки различных языков программирования, таких как: Visual Basic, C, C #, C ++, Matlab, Labview
- Конфигурационные файлы для позиционеров Standa и других производителей

8MRL250 Поворотная платформа
- Диапазон перемещения 360°
- Разрешающая способность энкодера 1 arcsec
- Двусторонняя повторяемость 4 arcsec
- Нагрузка до 20 кг
- Отсутствие люфта
- Высокая скорость > 3300 град/с

Контроллеры и драйверы от ACS motion control
- Управление для любых типов моторов
- Управление векторным движения в реальном времени
- Идентификация передаточной функции
- Поддержка калибровки и компенсация динамической ошибки
- LUMS программное оборудование для лазерной резки, маркировки, 3D печати
- Генерация траекторий через импорт CAD, DXF, DWG файлов и т. д.

ПРИМЕНИЕ
► Прецизионная микрообработка
► Лазерная резка
► Маркировка
► Сканирующие системы
► Системы слежения
► 3D печать

КОМПАНИЯ ЛЛС ОСУЩЕСТВЛЯЕТ ПОСТАВКУ, ПУСКО-НАЛАДОЧНЫЕ РАБОТЫ И ОБУЧЕНИЕ ПО ПРОДУКЦИИ STANDA

Компания Standa — в индустрии фotonики с 1987 года. В компании работает 160 человек и штат растет. Имеется более 1000 м² заводских помещений. Области деятельности: виброизоляция, точная регулировка оптики, оптомеханика, управление перемещением, автоматизация
Установки для лазерной маркировки на основе волоконных лазеров наиболее распространены и применяются в широком спектре областей: электроника, машиностроение, пищевая, медицинская, упаковочная промышленность и т.д.

На настоящее время для маркировки используются волоконные лазеры двух типов: с модуляцией добротности (Q-switch) и лазеры с конфигурацией MOPA. Лазеры с модуляцией добротности известны достаточно давно, поэтому и занимают значительную долю рынка.

Конфигурация MOPA - Master Oscillator Power Amplifier (задающий генератор-усилитель мощности) - является самой инновационной и технологичной системой на данный момент. В традиционных однокамерных лазерных системах приходится выбирать между шириной полосы и мощностью излучения. С технологией MOPA больше не приходится идти на этот компромисс.

Конструкция MOPA является двухкамерной, её образуют задающий генератор и усилитель мощности. Задающий генератор предназначен для генерации излучения небольшой мощности и с очень узкой шириной полосы. Это излучение используется в качестве зарядочного во второй активной среде, которая действует как усилитель мощности, где излучение усиливается до определенного уровня с сохранением его основных параметров. Одно из преимуществ этой системы заключается в том, что она не требует задающего пучка высокой мощности, а при этих условиях проще реализовать узкую ширину полосы частот. Способность конфигурации MOPA увеличивать выходную мощность излучения без изменения геометрии системы делает технологию самым популярным методом масштабирования мощности.

Если в системе в качестве усилителя используется усилитель на оптическом волнокне, то такая система называется MOPA (Master Oscillator Fiber Amplifiers).

Разработка и производство волоконных лазеров MOPA является одним из направлений компании JPT Opto-electronics. JPT Opto-electronics специализируется на исследованиях, производстве, продаже и техническом обслуживании волоконных оптики и волоконных лазеров. Продукты компании широко используются в оптической связи, оптическом зондировании, лазерной обработке, медицинской лазерной терапии и т.д. У JPT очень сильная исследовательская команда, каждый год она выполняет несколько проектов от государственных и общественных институтов, владеет многими патентами и интеллектуальной собственностью.

Сравнение характеристик волоконных лазеров MOPA компании JPT и лазеров с модуляцией добротности (Q-SWITCHED) других компаний

1. Форма импульса

Q-Switch: пиковая мощность проседает при увеличении частоты, длительность импульса не может быть отрегулирована.

MOPA JPT: поддерживает высокую пиковую мощность при различной частоте повторения и длительности импульсов.
2. Пиковая мощность
С увеличением частоты следования импульсов пиковая мощность при добротности проседает и зачастую становится меньше порога разрушения материала. Лазер МОПА сохраняет высокий уровень пиковой мощности при высокой частоте следования импульсов.

Низкая частота

![Graph of Q-Switch vs. MOPA JPT](image)

Высокая частота

3. Характеристики включения/выключения генерации излучения
Лазер МОПА имеет улучшенные характеристики включения/выключения генерации излучения: быстрое время нарастания и спада фронтов импульсов. Представлены осциллограммы для лазера JPT YDFLP M6+.

4. Нулевая задержка
Волоконные лазеры МОПА JPT обладают функцией контроля первого импульса, что делает лазер идеальным для выполнения качественной маркировки.

5. Контроль каждого импульса
JPT MOPA управляет каждым отдельным импульсом и дает регулярную матрицу импульсов. Благодаря этой функции лазер обеспечивает высокие показатели маркировки QR-кодов, штрих-кодов, при скрайбировании и т. д.

Q-switch: нерегулярная последовательность импульсов.

JPT MOPA: идеальная матрица импульсов.
ВОЛОКОННЫЕ ЛАЗЕРЫ МОРА КОМПАНИИ JPT И YAG ЛАЗЕРЫ

YAG лазеры и волоконные лазеры МОРА обладают возможностями маркировки, гравировки и травления на различных поверхностях и материалах. Хотя результат их работы практически аналогичен, все больше компаний обнаруживают конкурентное преимущество использования волоконных лазеров МОРА.

YAG лазеры
YAG лазеры используют ламповую накачку, а в качестве активной среды - кристалл YAG. Лампа и кристалл находятся в оптическом резонаторе, обычно позолоченном, который отражает свет и участвует в процессе генерации лазерного излучения. По сравнению с лазерами МОРА эти системы лишены многих преимуществ, тем не менее широко используются. Например, лампы для YAG лазеров имеют короткий срок службы и нуждаются в частой замене. Также они выделяют большое количество тепла и требуют водяного охлаждения. YAG лазеры обладают не очень высокой эффективностью и подвержены распространенным проблемам разрегулировки.

Волоконные лазеры МОРА
В отличие от YAG лазеров, для волоконных лазеров МОРА качество механизма накачки используются полупроводниковые диоды, в качестве усилителя - легированное оптическое волокно. Для волоконных лазеров легированное волокно также служит резонатором. Волоконные лазеры МОРА намного надежнее и эффективнее предыдущих технологий.

УСТАНОВКИ ДЛЯ ЛАЗЕРНОЙ МАРКИРОВКИ НА ОСНОВЕ ВОЛОКОННОГО МОРА ЛАЗЕРА

Сравнение установок для лазерной маркировки на основе волоконных лазеров МОРА и лазеров с модуляцией добротности.

1. Удаление слоя оксида алюминия
Современные электроника становятся все легче и тоньше. Большинство производителей мобильных телефонов, планшетов и компьютеров используют легкий оксид алюминия в качестве внешней оболочки своих изделий. При маркировке на тонкой алюминиевой пластине лазер с модуляцией добротности может легко вызвать деформацию материала и выпуклость на обратной стороне, что напрямую влияет на внешний вид изделия.

Лазер МОРА позволяет выполнить более точную маркировку без деформации материала. Это связано с тем, что лазер МОРА позволяет настроить небольшую длительность импульсов лазерного излучения, которые воздействуют на материал в течение более короткого времени, но с достаточной энергией для удаления аккуратного слоя. Таким образом, для удаления слоя оксида алюминия с тонкой пластины лазера МОРА - лучший выбор.

2. Черная маркировка на анодированном алюминии и цветная маркировка стали
Крупнейшие производители электроники, такие, как Apple, Huawei, ZTE, Lenovo и Meizu используют лазерную маркировку для нанесения идентификационной информации на поверхности своих изделий из анодированного алюминия. Требование к такой маркировке - высокая точность и черный цвет. На настоящее время отвечать таким требованиям может только лазер МОРА. Поскольку лазер МОРА имеет широкий диапазон регулировки длительности и частоты импульса, короткая длительность импульса и его высокая частота обеспечивает черную маркировку поверхности материала. Различные комбинации параметров приводят к различным оттенкам серого. Так же, подбором параметров, можно выполнить цветную маркировку на нержавеющей стали.

3. Прецизионная обработка электроники, полупроводников
Прецизионная обработка электроники и полупроводников требует точной линии. Лазеры с модуляцией добротности не могут регулировать параметры длительности импульса. Конструкция МОРА за счет этой способности позволяет выполнять маркировку точной линии с гладкими краями.

www.lenlasers.ru
Применение	Q-switch	MOPA лазер JPT
Удаление слоя поверхности с тонкой пластины оксида алюминия | Деформация поверхности | Деформация нет
Черная маркировка анодированного алюминия | Не выполняется | Возможность добиться различных оттенков черного настройкой параметров
ПредCISIONНАЯ обработка электроники, полупроводников | Слишком большая длительность импульса не позволяет выполнить предCISIONную обработку | Более качественное пять излучения, настройка длительности импульса, точная настройка энергии
Глубокая гравировка металла | Грубая заливка, неравномерность | Качественная заливка,
Черная маркировка нержающей стали | Необходимо обрабатывать в расфокусированном излучении, сложная настройка | Возможность добиться различных цветов настройкой длительности и частоты импульсов
Маркировка пластика | Маркировка склонна к пожеланию | Маркировка не желает
Маркировка бутылки из прозрачного пластика | Сложно для очистки | Легко чистить

Заключение
Волоконный лазер MOPA с уверенностью можно назвать самым гибким, благодаря возможности регулировки длительности импульсов. Устройство широко применяется во многих сферах деятельности, и, поскольку область лазерных технологий растет и развивается, ожидается использование лазера в медицинской промышленности и технологии быстрого прототипирования опытных образцов.

ВОЛОКОННЫЕ MOPA ЛАЗЕРЫ

| 20W, 30W Compact (M7) | 20W, 30W Regular | 60W, 70W 100W, 120W | 150W, 200W |

ТВЕРДОТЕЛЬНЫЕ ЛАЗЕРЫ С ДИОДНОЙ НАКАЧКОЙ

| 1W, 3W, 5W - UV | 7/10W зеленый | Волоконный непрерывный лазер 200W, 300W (воздушное охлаждение) | 500W, 800W, 1000W, 1200W |

Компания JPT предлагает широкий спектр продукции для различных требований. Лазеры JPT подходят для маркировки, гравировки, резки сварки (в том числе преCISIONной сварки и сварки разнородных металлов), лазерной очистки и т.д.
ТЕХНОЛОГИЧЕСКОЕ ОБОРУДОВАНИЕ ВОЛОКОННОЙ ОПТИКИ

ОБОРУДОВАНИЕ

- Оборудование для тестирования волокон и преформ
- Оборудование для сварки и обработки стекол
Компания предлагает наиболее полный ассортимент оборудования, начиная от анализаторов преформ до автоматизированных систем тестирования, которые измеряют размерные характеристики волокон и волоконных компонентов. Photon Kinetics также предлагает инновационные продукты для подготовки, временного соединения и выравнивания волокон, разработанные специально для снижения затрат и времени на обработку и измерения характеристик в производственной среде.

Анализаторы преформ

<table>
<thead>
<tr>
<th>Параметры</th>
<th>Модель 2600</th>
<th>Модель 2610</th>
</tr>
</thead>
<tbody>
<tr>
<td>Измерение ПП</td>
<td>< 0.00005</td>
<td>< 0.00001</td>
</tr>
<tr>
<td>Измерение диаметра</td>
<td>< 0.05 мм</td>
<td>< 0.05 мм</td>
</tr>
<tr>
<td>Измерение концентричности</td>
<td>< 0.05 мм</td>
<td>< 0.05 мм</td>
</tr>
<tr>
<td>Диаметр преформы</td>
<td>5 - 120 мм</td>
<td>8 - 40 мм</td>
</tr>
<tr>
<td>Время измерения</td>
<td>60 с.</td>
<td>< 20 с.</td>
</tr>
</tbody>
</table>

Измерители профиля и геометрии готовых волокон

Модель S14 обеспечивает точную и точную характеристику
- профиля показателя преломления одномодовых, многомодовых и специальных волокон с использованием метода RNF
- Параметры геометрии волокна и MFD на заданных пользователем длинах волн
- Длина волны отсечки и хроматическая дисперсия

<table>
<thead>
<tr>
<th>Позиционирование</th>
<th>Оболочка</th>
<th>Сердцевина (SM)</th>
<th>Сердцевина (MM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Диаметр</td>
<td>< 0.05 мкм</td>
<td>< 0.05 мкм</td>
<td>< 0.05 мкм</td>
</tr>
<tr>
<td>Овальность</td>
<td>< 0.3%</td>
<td>< 0.5%</td>
<td>< 0.5%</td>
</tr>
<tr>
<td>Нарушение концентричности</td>
<td>N/A</td>
<td>< 0.05 мкм</td>
<td>< 0.05 мкм</td>
</tr>
<tr>
<td>Разность ПП</td>
<td>0.0002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Время измерения</td>
<td>< 1 с</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Тестирование параметров оптических волокон

Хроматическая дисперсия, PMD, распределенная деформация
- 2800 Fiber Analysis System
- 2850 Tunable Laser CD System

Оптические рефлектометры

- 8000 and 8000i Production and Laboratory OTDRs

Измерение затухания и длины волны отсечки

- 2300 Fiber Analysis Systems (2300A, AG)
- 2500 Optical Fiber Analysis Systems (2500A, AB, AD, ABD)

Полюса и DMD

- 2500 Optical Fiber Analysis Systems (2500B, D, AB, AD, ABD)

Числовая апертура

- 2201 Far Field Scanner
- 2500 Optical Fiber Analysis Systems (2500A, AB, AD, ABD)

Диаметр поля моды

- 2201 Far Field Scanner
- 2304 Mode Field Diameter Option (2300A, AG)
- 2XXX-MFD Mode Field Diameter Option (2500A, AB, AD, ABD)

Дополнения

- Временные соединители (скорость соединения <20сек)
- Скалыватели (до 400 мкм)
ОБОРУДОВАНИЕ ДЛЯ СВАРКИ И ОБРАБОТКИ СТЕКОЛ

Ассортимент продуктов постоянно расширяется, чтобы охватить более широкие и более сложные применения.
В настоящее время продукция компании включает в себя:

- оборудование для сращивания и формирования, посредством CO₂-лазера
- автоматические системы для подготовки волокна и зачистки стекол,
- высокоточные скальвители,
- устройства для нанесения покрытия на оптические волокна,
- контрольные тестеры и интерферометры для тестирования сколов.

NYFORS также предлагает индивидуальные решения для производственных применений, таких как массовое производство волоконно-оптических гироскопов.

SMARTSPLICER

- Сварка End Cap
- Автоматическая зачистка
- Портативная версия зачистки
- Проверка качества зачистки
- Пленажерное перекрытие
- Тестирование оптических характеристик
- Автоматическая подготовка волокна
- Тейпирование волокон и стекол

AUTOPREP 2-3

- 100% очистка волокна
- Полностью автоматическая конструкция
- Снятие покрытия до 400мкм

AUTOCLEAVER LDA

- Угол скола 0-15 градусов
- Скальвание волокон: 1000 мкм оболочка, 1500 мкм
- покрытие
- Не нужны особые навыки работы оператора, конструкция типа user-friendly
- Миниатюрные версии
- Конструкция с внутренним компрессором

CLEAVEMETER 2-3D

- Контроль сколов волокон 1200мкм оболочка, 1500 мкм
- Разрешение камеры 1280х1024 пиксела
- 2D/3D измерения

И прочее оборудование

NYFORS – это инновационный поставщик современного оборудования для обработки стекла и подготовки оптического волокна для высокоскоростных и специализированных операций по сращиванию. NYFORS также предлагает индивидуальные решения для производственных применений, таких как массовое производство волоконно-оптических гироскопов.
ЛАЗЕРНАЯ БЕЗОПАСНОСТЬ

МЕЖДУНАРОДНЫЕ КЛАССЫ ЛАЗЕРНОЙ БЕЗОПАСНОСТИ
с несколько упрощенными и приближенными описаниями

<table>
<thead>
<tr>
<th>КЛАСС БЕЗОПАСНОСТИ</th>
<th>УПРОЩЕННОЕ ОПИСАНИЕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Открытое лазерное излучение не опасно при разумных условиях эксплуатации. Примеры: 0,2 мВт лазерный диод, полностью закрытый 10 Вт Nd:YAG лазер</td>
</tr>
<tr>
<td>1М</td>
<td>Открытое лазерное излучение не представляет опасности, при условии, что не используются оптические приборы, которые могут, например, фокусировать излучение.</td>
</tr>
<tr>
<td>2</td>
<td>Открытое лазерное излучение видимой области спектра (400-700 нм) и мощностью 1 мВт. Из-за мигательного рефлекса, оно не опасно для глаз в случае ограниченного взаимодействия (до 0,25 с). Пример: некоторые (но не все), лазерные укадки</td>
</tr>
<tr>
<td>2M</td>
<td>Те же характеристики, что для класса 2, но с дополнительным ограничением: не могут быть использованы оптические приборы. Мощность может быть выше, чем 1 мВт, но диаметр луча достаточно большой, для того, чтобы ограничить интенсивность до уровней, которые являются безопасными при коротком времени воздействия.</td>
</tr>
<tr>
<td>3R</td>
<td>Открытое излучение видимого диапазона порядка 5 мВт. Как правило, не повреждает глаза при кратковременном облучении менее 0,25 секунды.</td>
</tr>
<tr>
<td>3B</td>
<td>Открытое излучение может быть опасным для глаз, а также при особых условиях и для кожи. Диффузное излучение (рассеянное любой поверхностью) обычно не оказывает вреда. Мощность излучения в видимой области спектра до 500 мВт.</td>
</tr>
<tr>
<td>4</td>
<td>Открытое излучение очень опасно для глаз и кожи. Также отраженные и рассеянный свет представляет опасность для глаз. Излучение может привести к пожару или взрыву. Пример: 10 Вт аргоновый ионный лазер.</td>
</tr>
</tbody>
</table>

Несоблюдение техники безопасности может привести к следующим последствиям:

- Лазерная указка, 3 мВт в значительной степени яркое излучение, может быстро повредить сетчатку, но возникает мигательный рефлекс, который может защитить от повреждения
- Nd:YAG лазер, 100 мВт невидимое излучение, мигательный рефлекс не возникает опасность для глаз повышается
- Nd:YAG лазер, 10 Вт прожигает кожу и одежду
- Nd:YAG лазер в импульсном режиме опасный даже при малой средней мощности
- Промышленные высокомощные лазеры Nd:YAG и CO₂, лазеры, 1-10 кВт крайне опасно для кожи и глаз

Средства персональной защиты от лазерного излучения
Компания «Ленинградские Лазерные Системы» может предложить средства персональной защиты от лазерного излучения.
В 2018 году «ЛЛС» приняла участие в следующих выставках и конференциях:

- «Фотоника. Мир лазеров и оптики-2018» (г. Москва, ЦВК «Экспоцентр»),
- Международный военно-технический форум «АРМИЯ-2018», (г. Кубинка)
- 8-й Российский семинар по волоконным лазерам, (г. Новосибирск, НГУ)
- Международная конференция молодых ученых и специалистов «ФПО-2018», (г. Санкт-Петербург, Университет ИТМО)
- Международная конференция «Оптика-2018», (г. Санкт-Петербург)

Также было принято участие в обучении сотрудников Norinco China North Industries Corporation в Технопарке Университета ИТМО (г. Санкт-Петербург).

Национальные и международные проекты, которые реализуются совместно с нашими партнерами, представлены в следующих изданиях:

ФОТОНИКА

ФОТОН-ЭКСПРЕСС

Анонс мероприятий на 2019 год

04.03.2019 – 07.03.2019
Выставка «Фотоника. Мир лазеров и оптики-2019»
г. Москва, ЦВК «Экспоцентр»

02.03.2019 – 07.03.2019
2-я Российская школа по квантовым технологиям
г. Красная поляна

15.04.2019 – 19.04.2019
VIII Всероссийский Конгресс Молодых Ученых
г. Санкт-Петербург, Университет ИТМО

24.06.2019 – 28.06.2019
Международная научная конференция РАДИАЦИЯ И РАССЕЯНИЕ ЭЛЕКТРОМАГНИТНЫХ ВОЛН (RSEMW-2019)
г. Краснодар

27.08.2019 - 01.09.2019
14-й Международный авиационно-космический салон «МАКС-2019»
М.О., г. Жуковский, ЛИИ им. М.М. Громова

08.10.2019 - 11.10.2019
Всероссийская конференция по волоконной оптике
ВКВО-2019
г. Пермь

Мы всегда рады помочь с организацией конференций и семинаров, пригласить представителей производственных компаний для представления докладов о последних разработках и применении компонентов и оборудования в области фотоники и оптики.
АО «Ленинградские лазерные системы»
www.lenlasers.ru
телефон/Факс: +7 (812) 325-09-73
199034, Санкт-Петербург, Биржевая линия, д. 16,
Технопарк ИТМО, офис 401
e-mail: info@lenlasers.ru